今天遇到了这样一个问题,使用matplotlib绘制热图数组中横纵坐标自然是图片的像素排列顺序,
但是这样带来的问题就是画出来的x,y轴中坐标点的数据任然是x,y在数组中的下标,
实际中我们可能期望坐标点是其他的一个范围,如图:
坐标点标出来的是实际数组中的下标,而我希望纵坐标是频率,横坐标是其他的范围
plt.yticks(np.arange(0, 1024, 100), np.arange(10000, 11024, 100)) #第一个参数表示原来的坐标范围,100是每隔100个点标出一次 #第二个参数表示将展示的坐标范围替换为新的范围,同样每隔100个点标出一次 plt.xticks(np.arange(0, 2000, 500), np.arange(0, 50000, 500)) #同理将x轴的表示范围由(0,2000)扩展到(0,50000)每隔500个点标出一次
完成!
补充知识:matplotlib plt.scatter()中cmap用法
我就废话不多说了,还是直接看代码吧!
import numpy as np import matplotlib.pyplot as plt # Have colormaps separated into categories: # http://matplotlib.org/examples/color/colormaps_reference.html cmaps = [(\'Perceptually Uniform Sequential\', [ \'viridis\', \'plasma\', \'inferno\', \'magma\']), (\'Sequential\', [ \'Greys\', \'Purples\', \'Blues\', \'Greens\', \'Oranges\', \'Reds\', \'YlOrBr\', \'YlOrRd\', \'OrRd\', \'PuRd\', \'RdPu\', \'BuPu\', \'GnBu\', \'PuBu\', \'YlGnBu\', \'PuBuGn\', \'BuGn\', \'YlGn\']), (\'Sequential (2)\', [ \'binary\', \'gist_yarg\', \'gist_gray\', \'gray\', \'bone\', \'pink\', \'spring\', \'summer\', \'autumn\', \'winter\', \'cool\', \'Wistia\', \'hot\', \'afmhot\', \'gist_heat\', \'copper\']), (\'Diverging\', [ \'PiYG\', \'PRGn\', \'BrBG\', \'PuOr\', \'RdGy\', \'RdBu\', \'RdYlBu\', \'RdYlGn\', \'Spectral\', \'coolwarm\', \'bwr\', \'seismic\']), (\'Qualitative\', [ \'Pastel1\', \'Pastel2\', \'Paired\', \'Accent\', \'Dark2\', \'Set1\', \'Set2\', \'Set3\', \'tab10\', \'tab20\', \'tab20b\', \'tab20c\']), (\'Miscellaneous\', [ \'flag\', \'prism\', \'ocean\', \'gist_earth\', \'terrain\', \'gist_stern\', \'gnuplot\', \'gnuplot2\', \'CMRmap\', \'cubehelix\', \'brg\', \'hsv\', \'gist_rainbow\', \'rainbow\', \'jet\', \'nipy_spectral\', \'gist_ncar\'])] nrows = max(len(cmap_list) for cmap_category, cmap_list in cmaps) gradient = np.linspace(0, 1, 256) gradient = np.vstack((gradient, gradient)) def plot_color_gradients(cmap_category, cmap_list, nrows): fig, axes = plt.subplots(nrows=nrows) fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99) axes[0].set_title(cmap_category + \' colormaps\', fontsize=14) for ax, name in zip(axes, cmap_list): ax.imshow(gradient, aspect=\'auto\', cmap=plt.get_cmap(name)) pos = list(ax.get_position().bounds) x_text = pos[0] - 0.01 y_text = pos[1] + pos[3]/2. fig.text(x_text, y_text, name, va=\'center\', ha=\'right\', fontsize=10) # Turn off *all* ticks & spines, not just the ones with colormaps. for ax in axes: ax.set_axis_off() for cmap_category, cmap_list in cmaps: plot_color_gradients(cmap_category, cmap_list, nrows) #十分类散点图绘制 randlabel = np.random.randint(0,1,10) randdata = np.reshape(np.random.rand(10*2),(10,2)) cm = plt.cm.get_cmap(\'RdYlBu\') z = randlabel sc = plt.scatter(randdata[:,0], randdata[:,1], c=z, vmin=0, vmax=10, s=35,edgecolors=\'k\', cmap=cm) plt.colorbar(sc) plt.show()
以上这篇python matplotlib imshow热图坐标替换/映射实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持自学编程网。