前言
截止2019年年底我国股票投资者数量为15975.24万户, 如此多的股民热衷于炒股,首先抛开炒股技术不说, 那么多股票数据是不是非常难找, 找到之后是不是看着密密麻麻的数据是不是头都大了?
今天带大家爬取雪球平台的股票数据, 并且实现数据可视化
先看下效果图
基本环境配置
- python 3.6
- pycharm
- requests
- csv
- time
目标地址
爬虫代码
请求网页
import requests url = \'https://xueqiu.com/service/v5/stock/screener/quote/list\' response = requests.get(url=url, params=params, headers=headers, cookies=cookies) html_data = response.json()
解析数据
data_list = html_data[\'data\'][\'list\'] for i in data_list: dit = {} dit[\'股票代码\'] = i[\'symbol\'] dit[\'股票名字\'] = i[\'name\'] dit[\'当前价\'] = i[\'current\'] dit[\'涨跌额\'] = i[\'chg\'] dit[\'涨跌幅/%\'] = i[\'percent\'] dit[\'年初至今/%\'] = i[\'current_year_percent\'] dit[\'成交量\'] = i[\'volume\'] dit[\'成交额\'] = i[\'amount\'] dit[\'换手率/%\'] = i[\'turnover_rate\'] dit[\'市盈率TTM\'] = i[\'pe_ttm\'] dit[\'股息率/%\'] = i[\'dividend_yield\'] dit[\'市值\'] = i[\'market_capital\'] print(dit)
保存数据
import csv f = open(\'股票数据.csv\', mode=\'a\', encoding=\'utf-8-sig\', newline=\'\') csv_writer = csv.DictWriter(f, fieldnames=[\'股票代码\', \'股票名字\', \'当前价\', \'涨跌额\', \'涨跌幅/%\', \'年初至今/%\', \'成交量\', \'成交额\', \'换手率/%\', \'市盈率TTM\', \'股息率/%\', \'市值\']) csv_writer.writeheader() csv_writer.writerow(dit) f.close()
完整代码
import pprint import requests import time import csv f = open(\'股票数据.csv\', mode=\'a\', encoding=\'utf-8-sig\', newline=\'\') csv_writer = csv.DictWriter(f, fieldnames=[\'股票代码\', \'股票名称\', \'当前价\', \'涨跌额\', \'涨跌幅/%\', \'年初至今/%\', \'成交量\', \'成交额\', \'换手率/%\', \'市盈率TTM\', \'股息率/%\', \'市值\']) csv_writer.writeheader() for page in range(1, 53): time.sleep(1) url = \'https://xueqiu.com/service/v5/stock/screener/quote/list\' date = round(time.time()*1000) params = { \'page\': \'{}\'.format(page), \'size\': \'30\', \'order\': \'desc\', \'order_by\': \'amount\', \'exchange\': \'CN\', \'market\': \'CN\', \'type\': \'sha\', \'_\': \'{}\'.format(date), } cookies = { \'Cookie\': \'acw_tc=2760824216007592794858354eb971860e97492387fac450a734dbb6e89afb; xq_a_token=636e3a77b735ce64db9da253b75cbf49b2518316; xqat=636e3a77b735ce64db9da253b75cbf49b2518316; xq_r_token=91c25a6a9038fa2532dd45b2dd9b573a35e28cfd; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTYwMjY0MzAyMCwiY3RtIjoxNjAwNzU5MjY3OTEwLCJjaWQiOiJkOWQwbjRBWnVwIn0.bengzIpmr0io9f44NJdHuc_6g9EIjtrSlMgnqwKSWVzI4syI_yIH1F-GJfK4bTelWzDirufjWMW9DfDMyMkI75TpJqiwIq8PRsa1bQ7IuCXLbN71ebsiTOGfA5OsWSPQOdVXQA0goqC4yvXLOk5KgC5FQIzZut0N4uaRDLsq7vhmcb8CBw504tCZnbIJTfGGIFIfw7TkwuUCXGY6Q-0mlOG8U4EUTcOCuxN87Ej_OIKnXN8cTSVh7XW6SFxOgU6p3yUXDgvS04rt-nFewpNNqfbGAKk965N-HJ9Mq8E52BRJ3rt_ndYP8yCaeQ6xSsz5P2mNlKwNFe9EQeltim_mDg; u=501600759279498; device_id=24700f9f1986800ab4fcc880530dd0ed; Hm_lvt_1db88642e346389874251b5a1eded6e3=1600759286; _ga=GA1.2.2049292015.1600759388; _gid=GA1.2.391362708.1600759388; s=du11eogy79; __utma=1.2049292015.1600759388.1600759397.1600759397.1; __utmc=1; __utmz=1.1600759397.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __utmb=1.3.10.1600759397; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1600759448\' } headers = { \'Host\': \'xueqiu.com\', \'Pragma\': \'no-cache\', \'Referer\': \'https://xueqiu.com/hq\', \'User-Agent\': \'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36\' } response = requests.get(url=url, params=params, headers=headers, cookies=cookies) html_data = response.json() data_list = html_data[\'data\'][\'list\'] for i in data_list: dit = {} dit[\'股票代码\'] = i[\'symbol\'] dit[\'股票名称\'] = i[\'name\'] dit[\'当前价\'] = i[\'current\'] dit[\'涨跌额\'] = i[\'chg\'] dit[\'涨跌幅/%\'] = i[\'percent\'] dit[\'年初至今/%\'] = i[\'current_year_percent\'] dit[\'成交量\'] = i[\'volume\'] dit[\'成交额\'] = i[\'amount\'] dit[\'换手率/%\'] = i[\'turnover_rate\'] dit[\'市盈率TTM\'] = i[\'pe_ttm\'] dit[\'股息率/%\'] = i[\'dividend_yield\'] dit[\'市值\'] = i[\'market_capital\'] csv_writer.writerow(dit) print(dit) f.close()
数据分析代码
c = ( Bar() .add_xaxis(list(df2[\'股票名称\'].values)) .add_yaxis(\"股票成交量情况\", list(df2[\'成交量\'].values)) .set_global_opts( title_opts=opts.TitleOpts(title=\"成交量图表 - Volume chart\"), datazoom_opts=opts.DataZoomOpts(), ) .render(\"data.html\") )
以上就是Python爬取股票信息,并可视化数据的示例的详细内容,更多关于Python爬取股票信息的资料请关注自学编程网其它相关文章!