使用Python绘制正态分布曲线,借助matplotlib绘图工具;
#-*-coding:utf-8-*- \"\"\" python绘制标准正态分布曲线 \"\"\" # ============================================================== import numpy as np import math import matplotlib.pyplot as plt def gd(x, mu=0, sigma=1): \"\"\"根据公式,由自变量x计算因变量的值 Argument: x: array 输入数据(自变量) mu: float 均值 sigma: float 方差 \"\"\" left = 1 / (np.sqrt(2 * math.pi) * np.sqrt(sigma)) right = np.exp(-(x - mu)**2 / (2 * sigma)) return left * right if __name__ == \'__main__\': # 自变量 x = np.arange(-4, 5, 0.1) # 因变量(不同均值或方差) y_1 = gd(x, 0, 0.2) y_2 = gd(x, 0, 1.0) y_3 = gd(x, 0, 5.0) y_4 = gd(x, -2, 0.5) # 绘图 plt.plot(x, y_1, color=\'green\') plt.plot(x, y_2, color=\'blue\') plt.plot(x, y_3, color=\'yellow\') plt.plot(x, y_4, color=\'red\') # 设置坐标系 plt.xlim(-5.0, 5.0) plt.ylim(-0.2, 1) ax = plt.gca() ax.spines[\'right\'].set_color(\'none\') ax.spines[\'top\'].set_color(\'none\') ax.xaxis.set_ticks_position(\'bottom\') ax.spines[\'bottom\'].set_position((\'data\', 0)) ax.yaxis.set_ticks_position(\'left\') ax.spines[\'left\'].set_position((\'data\', 0)) plt.legend(labels=[\'$\\mu = 0, \\sigma^2=0.2$\', \'$\\mu = 0, \\sigma^2=1.0$\', \'$\\mu = 0, \\sigma^2=5.0$\', \'$\\mu = -2, \\sigma^2=0.5$\']) plt.show()
以上就是利用python绘制正态分布曲线的详细内容,更多关于python 正态分布的资料请关注自学编程网其它相关文章!