Python网络爬虫领域两个最新的比较火的工具莫过于httpx和parsel了。httpx号称下一代的新一代的网络请求库,不仅支持requests库的所有操作,还能发送异步请求,为编写异步爬虫提供了便利。parsel最初集成在著名Python爬虫框架Scrapy中,后独立出来成立一个单独的模块,支持XPath选择器, CSS选择器和正则表达式等多种解析提取方式, 据说相比于BeautifulSoup,parsel的解析效率更高。
今天我们就以爬取链家网上的二手房在售房产信息为例,来测评下httpx和parsel这两个库。为了节约时间,我们以爬取上海市浦东新区500万元-800万元以上的房产为例。
requests + BeautifulSoup组合
首先上场的是Requests + BeautifulSoup组合,这也是大多数人刚学习Python爬虫时使用的组合。本例中爬虫的入口url是https://sh.lianjia.com/ershoufang/pudong/a3p5/, 先发送请求获取最大页数,然后循环发送请求解析单个页面提取我们所要的信息(比如小区名,楼层,朝向,总价,单价等信息),最后导出csv文件。如果你正在阅读本文,相信你对Python爬虫已经有了一定了解,所以我们不会详细解释每一行代码。
整个项目代码如下所示:
# homelink_requests.py # Author: 大江狗 from fake_useragent import UserAgent import requests from bs4 import BeautifulSoup import csv import re import time class HomeLinkSpider(object): def __init__(self): self.ua = UserAgent() self.headers = {\"User-Agent\": self.ua.random} self.data = list() self.path = \"浦东_三房_500_800万.csv\" self.url = \"https://sh.lianjia.com/ershoufang/pudong/a3p5/\" def get_max_page(self): response = requests.get(self.url, headers=self.headers) if response.status_code == 200: soup = BeautifulSoup(response.text, \'html.parser\') a = soup.select(\'div[class=\"page-box house-lst-page-box\"]\') #使用eval是字符串转化为字典格式 max_page = eval(a[0].attrs[\"page-data\"])[\"totalPage\"] return max_page else: print(\"请求失败 status:{}\".format(response.status_code)) return None def parse_page(self): max_page = self.get_max_page() for i in range(1, max_page + 1): url = \'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/\'.format(i) response = requests.get(url, headers=self.headers) soup = BeautifulSoup(response.text, \'html.parser\') ul = soup.find_all(\"ul\", class_=\"sellListContent\") li_list = ul[0].select(\"li\") for li in li_list: detail = dict() detail[\'title\'] = li.select(\'div[class=\"title\"]\')[0].get_text() # 2室1厅 | 74.14平米 | 南 | 精装 | 高楼层(共6层) | 1999年建 | 板楼 house_info = li.select(\'div[class=\"houseInfo\"]\')[0].get_text() house_info_list = house_info.split(\" | \") detail[\'bedroom\'] = house_info_list[0] detail[\'area\'] = house_info_list[1] detail[\'direction\'] = house_info_list[2] floor_pattern = re.compile(r\'\\d{1,2}\') # 从字符串任意位置匹配 match1 = re.search(floor_pattern, house_info_list[4]) if match1: detail[\'floor\'] = match1.group() else: detail[\'floor\'] = \"未知\" # 匹配年份 year_pattern = re.compile(r\'\\d{4}\') match2 = re.search(year_pattern, house_info_list[5]) if match2: detail[\'year\'] = match2.group() else: detail[\'year\'] = \"未知\" # 文兰小区 - 塘桥, 提取小区名和哈快 position_info = li.select(\'div[class=\"positionInfo\"]\')[0].get_text().split(\' - \') detail[\'house\'] = position_info[0] detail[\'location\'] = position_info[1] # 650万,匹配650 price_pattern = re.compile(r\'\\d+\') total_price = li.select(\'div[class=\"totalPrice\"]\')[0].get_text() detail[\'total_price\'] = re.search(price_pattern, total_price).group() # 单价64182元/平米, 匹配64182 unit_price = li.select(\'div[class=\"unitPrice\"]\')[0].get_text() detail[\'unit_price\'] = re.search(price_pattern, unit_price).group() self.data.append(detail) def write_csv_file(self): head = [\"标题\", \"小区\", \"房厅\", \"面积\", \"朝向\", \"楼层\", \"年份\", \"位置\", \"总价(万)\", \"单价(元/平方米)\"] keys = [\"title\", \"house\", \"bedroom\", \"area\", \"direction\", \"floor\", \"year\", \"location\", \"total_price\", \"unit_price\"] try: with open(self.path, \'w\', newline=\'\', encoding=\'utf_8_sig\') as csv_file: writer = csv.writer(csv_file, dialect=\'excel\') if head is not None: writer.writerow(head) for item in self.data: row_data = [] for k in keys: row_data.append(item[k]) # print(row_data) writer.writerow(row_data) print(\"Write a CSV file to path %s Successful.\" % self.path) except Exception as e: print(\"Fail to write CSV to path: %s, Case: %s\" % (self.path, e)) if __name__ == \'__main__\': start = time.time() home_link_spider = HomeLinkSpider() home_link_spider.parse_page() home_link_spider.write_csv_file() end = time.time() print(\"耗时:{}秒\".format(end-start))
注意:我们使用了fake_useragent, requests和BeautifulSoup,这些都需要通过pip事先安装好才能用。
现在我们来看下爬取结果,耗时约18.5秒,总共爬取580条数据。
requests + parsel组合
这次我们同样采用requests获取目标网页内容,使用parsel库(事先需通过pip安装)来解析。Parsel库的用法和BeautifulSoup相似,都是先创建实例,然后使用各种选择器提取DOM元素和数据,但语法上稍有不同。Beautiful有自己的语法规则,而Parsel库支持标准的css选择器和xpath选择器, 通过get方法或getall方法获取文本或属性值,使用起来更方便。
# BeautifulSoup的用法 from bs4 import BeautifulSoup soup = BeautifulSoup(response.text, \'html.parser\') ul = soup.find_all(\"ul\", class_=\"sellListContent\")[0] # Parsel的用法, 使用Selector类 from parsel import Selector selector = Selector(response.text) ul = selector.css(\'ul.sellListContent\')[0] # Parsel获取文本值或属性值案例 selector.css(\'div.title span::text\').get() selector.css(\'ul li a::attr(href)\').get() >>> for li in selector.css(\'ul > li\'): ... print(li.xpath(\'.//@href\').get())
注:老版的parsel库使用extract()或extract_first()方法获取文本或属性值,在新版中已被get()和getall()方法替代。
全部代码如下所示:
# homelink_parsel.py # Author: 大江狗 from fake_useragent import UserAgent import requests import csv import re import time from parsel import Selector class HomeLinkSpider(object): def __init__(self): self.ua = UserAgent() self.headers = {\"User-Agent\": self.ua.random} self.data = list() self.path = \"浦东_三房_500_800万.csv\" self.url = \"https://sh.lianjia.com/ershoufang/pudong/a3p5/\" def get_max_page(self): response = requests.get(self.url, headers=self.headers) if response.status_code == 200: # 创建Selector类实例 selector = Selector(response.text) # 采用css选择器获取最大页码div Boxl a = selector.css(\'div[class=\"page-box house-lst-page-box\"]\') # 使用eval将page-data的json字符串转化为字典格式 max_page = eval(a[0].xpath(\'//@page-data\').get())[\"totalPage\"] print(\"最大页码数:{}\".format(max_page)) return max_page else: print(\"请求失败 status:{}\".format(response.status_code)) return None def parse_page(self): max_page = self.get_max_page() for i in range(1, max_page + 1): url = \'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/\'.format(i) response = requests.get(url, headers=self.headers) selector = Selector(response.text) ul = selector.css(\'ul.sellListContent\')[0] li_list = ul.css(\'li\') for li in li_list: detail = dict() detail[\'title\'] = li.css(\'div.title a::text\').get() # 2室1厅 | 74.14平米 | 南 | 精装 | 高楼层(共6层) | 1999年建 | 板楼 house_info = li.css(\'div.houseInfo::text\').get() house_info_list = house_info.split(\" | \") detail[\'bedroom\'] = house_info_list[0] detail[\'area\'] = house_info_list[1] detail[\'direction\'] = house_info_list[2] floor_pattern = re.compile(r\'\\d{1,2}\') match1 = re.search(floor_pattern, house_info_list[4]) # 从字符串任意位置匹配 if match1: detail[\'floor\'] = match1.group() else: detail[\'floor\'] = \"未知\" # 匹配年份 year_pattern = re.compile(r\'\\d{4}\') match2 = re.search(year_pattern, house_info_list[5]) if match2: detail[\'year\'] = match2.group() else: detail[\'year\'] = \"未知\" # 文兰小区 - 塘桥 提取小区名和哈快 position_info = li.css(\'div.positionInfo a::text\').getall() detail[\'house\'] = position_info[0] detail[\'location\'] = position_info[1] # 650万,匹配650 price_pattern = re.compile(r\'\\d+\') total_price = li.css(\'div.totalPrice span::text\').get() detail[\'total_price\'] = re.search(price_pattern, total_price).group() # 单价64182元/平米, 匹配64182 unit_price = li.css(\'div.unitPrice span::text\').get() detail[\'unit_price\'] = re.search(price_pattern, unit_price).group() self.data.append(detail) def write_csv_file(self): head = [\"标题\", \"小区\", \"房厅\", \"面积\", \"朝向\", \"楼层\", \"年份\", \"位置\", \"总价(万)\", \"单价(元/平方米)\"] keys = [\"title\", \"house\", \"bedroom\", \"area\", \"direction\", \"floor\", \"year\", \"location\", \"total_price\", \"unit_price\"] try: with open(self.path, \'w\', newline=\'\', encoding=\'utf_8_sig\') as csv_file: writer = csv.writer(csv_file, dialect=\'excel\') if head is not None: writer.writerow(head) for item in self.data: row_data = [] for k in keys: row_data.append(item[k]) # print(row_data) writer.writerow(row_data) print(\"Write a CSV file to path %s Successful.\" % self.path) except Exception as e: print(\"Fail to write CSV to path: %s, Case: %s\" % (self.path, e)) if __name__ == \'__main__\': start = time.time() home_link_spider = HomeLinkSpider() home_link_spider.parse_page() home_link_spider.write_csv_file() end = time.time() print(\"耗时:{}秒\".format(end-start))
现在我们来看下爬取结果,爬取580条数据耗时约16.5秒,节省了2秒时间。可见parsel比BeautifulSoup解析效率是要高的,爬取任务少时差别不大,任务多的话差别可能会大些。
httpx同步 + parsel组合
我们现在来更进一步,使用httpx替代requests库。httpx发送同步请求的方式和requests库基本一样,所以我们只需要修改上例中两行代码,把requests替换成httpx即可, 其余代码一模一样。
from fake_useragent import UserAgent import csv import re import time from parsel import Selector import httpx class HomeLinkSpider(object): def __init__(self): self.ua = UserAgent() self.headers = {\"User-Agent\": self.ua.random} self.data = list() self.path = \"浦东_三房_500_800万.csv\" self.url = \"https://sh.lianjia.com/ershoufang/pudong/a3p5/\" def get_max_page(self): # 修改这里把requests换成httpx response = httpx.get(self.url, headers=self.headers) if response.status_code == 200: # 创建Selector类实例 selector = Selector(response.text) # 采用css选择器获取最大页码div Boxl a = selector.css(\'div[class=\"page-box house-lst-page-box\"]\') # 使用eval将page-data的json字符串转化为字典格式 max_page = eval(a[0].xpath(\'//@page-data\').get())[\"totalPage\"] print(\"最大页码数:{}\".format(max_page)) return max_page else: print(\"请求失败 status:{}\".format(response.status_code)) return None def parse_page(self): max_page = self.get_max_page() for i in range(1, max_page + 1): url = \'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/\'.format(i) # 修改这里把requests换成httpx response = httpx.get(url, headers=self.headers) selector = Selector(response.text) ul = selector.css(\'ul.sellListContent\')[0] li_list = ul.css(\'li\') for li in li_list: detail = dict() detail[\'title\'] = li.css(\'div.title a::text\').get() # 2室1厅 | 74.14平米 | 南 | 精装 | 高楼层(共6层) | 1999年建 | 板楼 house_info = li.css(\'div.houseInfo::text\').get() house_info_list = house_info.split(\" | \") detail[\'bedroom\'] = house_info_list[0] detail[\'area\'] = house_info_list[1] detail[\'direction\'] = house_info_list[2] floor_pattern = re.compile(r\'\\d{1,2}\') match1 = re.search(floor_pattern, house_info_list[4]) # 从字符串任意位置匹配 if match1: detail[\'floor\'] = match1.group() else: detail[\'floor\'] = \"未知\" # 匹配年份 year_pattern = re.compile(r\'\\d{4}\') match2 = re.search(year_pattern, house_info_list[5]) if match2: detail[\'year\'] = match2.group() else: detail[\'year\'] = \"未知\" # 文兰小区 - 塘桥 提取小区名和哈快 position_info = li.css(\'div.positionInfo a::text\').getall() detail[\'house\'] = position_info[0] detail[\'location\'] = position_info[1] # 650万,匹配650 price_pattern = re.compile(r\'\\d+\') total_price = li.css(\'div.totalPrice span::text\').get() detail[\'total_price\'] = re.search(price_pattern, total_price).group() # 单价64182元/平米, 匹配64182 unit_price = li.css(\'div.unitPrice span::text\').get() detail[\'unit_price\'] = re.search(price_pattern, unit_price).group() self.data.append(detail) def write_csv_file(self): head = [\"标题\", \"小区\", \"房厅\", \"面积\", \"朝向\", \"楼层\", \"年份\", \"位置\", \"总价(万)\", \"单价(元/平方米)\"] keys = [\"title\", \"house\", \"bedroom\", \"area\", \"direction\", \"floor\", \"year\", \"location\", \"total_price\", \"unit_price\"] try: with open(self.path, \'w\', newline=\'\', encoding=\'utf_8_sig\') as csv_file: writer = csv.writer(csv_file, dialect=\'excel\') if head is not None: writer.writerow(head) for item in self.data: row_data = [] for k in keys: row_data.append(item[k]) # print(row_data) writer.writerow(row_data) print(\"Write a CSV file to path %s Successful.\" % self.path) except Exception as e: print(\"Fail to write CSV to path: %s, Case: %s\" % (self.path, e)) if __name__ == \'__main__\': start = time.time() home_link_spider = HomeLinkSpider() home_link_spider.parse_page() home_link_spider.write_csv_file() end = time.time() print(\"耗时:{}秒\".format(end-start))
整个爬取过程耗时16.1秒,可见使用httpx发送同步请求时效率和requests基本无差别。
注意:Windows上使用pip安装httpx可能会出现报错,要求安装Visual Studio C++, 这个下载安装好就没事了。
接下来,我们就要开始王炸了,使用httpx和asyncio编写一个异步爬虫看看从链家网上爬取580条数据到底需要多长时间。
httpx异步+ parsel组合
Httpx厉害的地方就是能发送异步请求。整个异步爬虫实现原理时,先发送同步请求获取最大页码,把每个单页的爬取和数据解析变为一个asyncio协程任务(使用async定义),最后使用loop执行。
大部分代码与同步爬虫相同,主要变动地方有两个:
# 异步 - 使用协程函数解析单页面,需传入单页面url地址 async def parse_single_page(self, url): # 使用httpx发送异步请求获取单页数据 async with httpx.AsyncClient() as client: response = await client.get(url, headers=self.headers) selector = Selector(response.text) # 其余地方一样 def parse_page(self): max_page = self.get_max_page() loop = asyncio.get_event_loop() # Python 3.6之前用ayncio.ensure_future或loop.create_task方法创建单个协程任务 # Python 3.7以后可以用户asyncio.create_task方法创建单个协程任务 tasks = [] for i in range(1, max_page + 1): url = \'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/\'.format(i) tasks.append(self.parse_single_page(url)) # 还可以使用asyncio.gather(*tasks)命令将多个协程任务加入到事件循环 loop.run_until_complete(asyncio.wait(tasks)) loop.close()
整个项目代码如下所示:
from fake_useragent import UserAgent import csv import re import time from parsel import Selector import httpx import asyncio class HomeLinkSpider(object): def __init__(self): self.ua = UserAgent() self.headers = {\"User-Agent\": self.ua.random} self.data = list() self.path = \"浦东_三房_500_800万.csv\" self.url = \"https://sh.lianjia.com/ershoufang/pudong/a3p5/\" def get_max_page(self): response = httpx.get(self.url, headers=self.headers) if response.status_code == 200: # 创建Selector类实例 selector = Selector(response.text) # 采用css选择器获取最大页码div Boxl a = selector.css(\'div[class=\"page-box house-lst-page-box\"]\') # 使用eval将page-data的json字符串转化为字典格式 max_page = eval(a[0].xpath(\'//@page-data\').get())[\"totalPage\"] print(\"最大页码数:{}\".format(max_page)) return max_page else: print(\"请求失败 status:{}\".format(response.status_code)) return None # 异步 - 使用协程函数解析单页面,需传入单页面url地址 async def parse_single_page(self, url): async with httpx.AsyncClient() as client: response = await client.get(url, headers=self.headers) selector = Selector(response.text) ul = selector.css(\'ul.sellListContent\')[0] li_list = ul.css(\'li\') for li in li_list: detail = dict() detail[\'title\'] = li.css(\'div.title a::text\').get() # 2室1厅 | 74.14平米 | 南 | 精装 | 高楼层(共6层) | 1999年建 | 板楼 house_info = li.css(\'div.houseInfo::text\').get() house_info_list = house_info.split(\" | \") detail[\'bedroom\'] = house_info_list[0] detail[\'area\'] = house_info_list[1] detail[\'direction\'] = house_info_list[2] floor_pattern = re.compile(r\'\\d{1,2}\') match1 = re.search(floor_pattern, house_info_list[4]) # 从字符串任意位置匹配 if match1: detail[\'floor\'] = match1.group() else: detail[\'floor\'] = \"未知\" # 匹配年份 year_pattern = re.compile(r\'\\d{4}\') match2 = re.search(year_pattern, house_info_list[5]) if match2: detail[\'year\'] = match2.group() else: detail[\'year\'] = \"未知\" # 文兰小区 - 塘桥 提取小区名和哈快 position_info = li.css(\'div.positionInfo a::text\').getall() detail[\'house\'] = position_info[0] detail[\'location\'] = position_info[1] # 650万,匹配650 price_pattern = re.compile(r\'\\d+\') total_price = li.css(\'div.totalPrice span::text\').get() detail[\'total_price\'] = re.search(price_pattern, total_price).group() # 单价64182元/平米, 匹配64182 unit_price = li.css(\'div.unitPrice span::text\').get() detail[\'unit_price\'] = re.search(price_pattern, unit_price).group() self.data.append(detail) def parse_page(self): max_page = self.get_max_page() loop = asyncio.get_event_loop() # Python 3.6之前用ayncio.ensure_future或loop.create_task方法创建单个协程任务 # Python 3.7以后可以用户asyncio.create_task方法创建单个协程任务 tasks = [] for i in range(1, max_page + 1): url = \'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/\'.format(i) tasks.append(self.parse_single_page(url)) # 还可以使用asyncio.gather(*tasks)命令将多个协程任务加入到事件循环 loop.run_until_complete(asyncio.wait(tasks)) loop.close() def write_csv_file(self): head = [\"标题\", \"小区\", \"房厅\", \"面积\", \"朝向\", \"楼层\", \"年份\", \"位置\", \"总价(万)\", \"单价(元/平方米)\"] keys = [\"title\", \"house\", \"bedroom\", \"area\", \"direction\", \"floor\", \"year\", \"location\", \"total_price\", \"unit_price\"] try: with open(self.path, \'w\', newline=\'\', encoding=\'utf_8_sig\') as csv_file: writer = csv.writer(csv_file, dialect=\'excel\') if head is not None: writer.writerow(head) for item in self.data: row_data = [] for k in keys: row_data.append(item[k]) writer.writerow(row_data) print(\"Write a CSV file to path %s Successful.\" % self.path) except Exception as e: print(\"Fail to write CSV to path: %s, Case: %s\" % (self.path, e)) if __name__ == \'__main__\': start = time.time() home_link_spider = HomeLinkSpider() home_link_spider.parse_page() home_link_spider.write_csv_file() end = time.time() print(\"耗时:{}秒\".format(end-start))
现在到了见证奇迹的时刻了。从链家网上爬取了580条数据,使用httpx编写的异步爬虫仅仅花了2.5秒!!
对比与总结
爬取同样的内容,采用不同工具组合耗时是不一样的。httpx异步+parsel组合毫无疑问是最大的赢家, requests和BeautifulSoup确实可以功成身退啦。
- requests + BeautifulSoup: 18.5 秒
- requests + parsel: 16.5秒
- httpx 同步 + parsel: 16.1秒
- httpx 异步 + parsel: 2.5秒
对于Python爬虫,你还有喜欢的库吗?
以上就是python爬虫请求库httpx和parsel解析库的使用测评的详细内容,更多关于python httpx和parsel的资料请关注自学编程网其它相关文章!