一、CrawlSpider类介绍
1.1 引入
使用scrapy框架进行全站数据爬取可以基于Spider类,也可以使用接下来用到的CrawlSpider类。基于Spider类的全站数据爬取之前举过栗子,感兴趣的可以康康
scrapy基于CrawlSpider类的全站数据爬取
1.2 介绍和使用
1.2.1 介绍
CrawlSpider
是Spider的一个子类,因此CrawlSpider
除了继承Spider的特性和功能外,还有自己特有的功能,主要用到的是 LinkExtractor()
和rules = (Rule(LinkExtractor(allow=r\'Items/\'), callback=\'parse_item\', follow=True),)
LinkExtractor()
:链接提取器
LinkExtractor()
接受response对象,并根据allow
对应的正则表达式提取响应对象中的链接
link = LinkExtractor( # Items只能是一个正则表达式,会提取当前页面中满足该\"正则表达式\"的url allow=r\'Items/\' )
rules = (Rule(link, callback=\'parse_item\', follow=True),)
:规则解析器
按照指定规则从链接提取器中提取到的链接中解析网页数据
link:是一个LinkExtractor()对象,指定链接提取器
callback:回调函数,指定规则解析器(解析方法)解析数据
follow:是否将链接提取器继续作用到链接提取器提取出的链接网页中
import scrapy # 导入相关的包 from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule class TextSpider(CrawlSpider): name = \'text\' allowed_domains = [\'www.xxx.com\'] start_urls = [\'http://www.xxx.com/\'] # 链接提取器,从接受到的response对象中,根据item正则表达式提取页面中的链接 link = LinkExtractor(allow=r\'Items/\') link2 = LinkExtractor(allow=r\'Items/\') # 规则解析器,根据callback将链接提取器提取到的链接进行数据解析 # follow为true,则表示将链接提取器继续作用到链接提取器所提取到的链接页面中 # 故:在我们提取多页数据时,若第一页对应的网页中包含了第2,3,4,5页的链接, # 当跳转到第5页时,第5页又包含了第6,7,8,9页的链接, # 令follow=True,就可以持续作用,从而提取到所有页面的链接 rules = (Rule(link, callback=\'parse_item\', follow=True), Rule(link2,callback=\'parse_content\',follow=False)) # 链接提取器link使用parse_item解析数据 def parse_item(self, response): item = {} yield item # 链接提取器link2使用parse_content解析数据 def parse_content(self, response): item = {} yield item
1.2.2 使用
创建爬虫文件:除了创建爬虫文件不同外,创建项目和运行爬虫使用的命令和基于Spider类使用的命令相同
scrapy genspider crawl -t spiderName www.xxx.com
二、案例:古诗文网全站数据爬取
爬取古诗文网首页古诗的标题,以及每一首诗详情页古诗的标题和内容。
最后将从详情页提取到的古诗标题和内容进行持久化存储
2.1 爬虫文件
import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from gushiPro.items import GushiproItem,ContentItem class GushiSpider(CrawlSpider): name = \'gushi\' #allowed_domains = [\'www.xxx.com\'] start_urls = [\'https://www.gushiwen.org/\'] # 链接提取器:只能使用正则表达式,提取当前页面的满足allow条件的链接 link = LinkExtractor(allow=r\'/default_\\d+\\.aspx\') # 链接提取器,提取所有标题对应的详情页url content_link = LinkExtractor(allow=r\'cn/shiwenv_\\w+\\.aspx\') rules = ( # 规则解析器,需要解析所有的页面,所有follow=True Rule(link, callback=\'parse_item\', follow=True), # 不需要写follow,因为我们只需要解析详情页中的数据,而不是详情页中的url Rule(content_link, callback=\'content_item\'), ) # 解析当前页面的标题 def parse_item(self, response): p_list = response.xpath(\'//div[@class=\"sons\"]/div[1]/p[1]\') for p in p_list: title = p.xpath(\'./a//text()\').extract_first() item = GushiproItem() item[\'title\'] = title yield item # 解析详情页面的标题和内容 def content_item(self,response): # //div[@id=\"sonsyuanwen\"]/div[@class=\"cont\"]/div[@class=\"contson\"] # 解析详情页面的内容 content = response.xpath(\'//div[@id=\"sonsyuanwen\"]/div[@class=\"cont\"]/div[@class=\"contson\"]//text()\').extract() content = \"\".join(content) # # 解析详情页面的标题 title = response.xpath(\'//div[@id=\"sonsyuanwen\"]/div[@class=\"cont\"]/h1/text()\').extract_first() # print(\"title:\"+title+\"\\ncontent:\"+content) item = ContentItem() item[\"content\"] = content item[\"title\"] = title # 将itme对象传给管道 yield item
2.2 item文件
import scrapy # 不同的item类是独立的,他们可以创建不同的item对象 class GushiproItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() title = scrapy.Field() class ContentItem(scrapy.Item): title = scrapy.Field() content = scrapy.Field()
2.3 管道文件
from itemadapter import ItemAdapter class GushiproPipeline: def __init__(self): self.fp = None def open_spider(self,spider): self.fp = open(\"gushi.txt\",\'w\',encoding=\'utf-8\') print(\"开始爬虫\") def process_item(self, item, spider): # 从详情页获取标题和内容,所以需要判断爬虫文件中传来的item是什么类的item # item.__class__.__name__判断属于什么类型的item if item.__class__.__name__ == \"ContentItem\": content = \"《\"+item[\'title\']+\"》\",item[\'content\'] content = \"\".join(content) print(content) self.fp.write(content) return item def close_spider(self,spider): self.fp.close() print(\"结束爬虫\")
2.4 配置文件
2.5 输出结果
© 版权声明
THE END
暂无评论内容