这篇博客将介绍使用Python,OpenCV获取、更改像素,修改图像通道,截取图像感兴趣ROI;单通道图,BGR三通道图,四通道透明图,不透明图;
1. 效果图
原图 VS 更改右下某个像素为红色,更改左上角1/4区域为绿色,效果图如下:
裁剪感兴趣区域:分别截取左上角、右上角、左下角、右下角,各占1/4;效果图如下:
原图 VS 图像单通道灰度图效果如下:
左上原图 VS 右上R通道图 VS 左下G通道图 VS 右下B通道图效果如下:
图像4通道 全透明图 VS 不透明效果图:
2. 源码
# USAGE # python opencv_getting_setting.py --image fjdj.png # 导入必要的包 import argparse import cv2 import imutils import numpy as np # 构建命令行参数及解析 # --image 磁盘图片路径,默认名称为当前py文件同级目录:fjdj.jpg ap = argparse.ArgumentParser() ap.add_argument(\"-i\", \"--image\", type=str, default=\"fjdj.jpg\", help=\"path to the input image\") args = vars(ap.parse_args()) ap = argparse.ArgumentParser() # 加载图像,获取空间维度(宽度、高度),展示原始图像到屏幕 image = cv2.imread(args[\"image\"]) image = imutils.resize(image, width=430) origin = image.copy() (h, w) = image.shape[:2] cv2.imshow(\"Original\", image) # 图像以Numpy数组存在,获取左上角,图像索引从0开始 # 图像以BGR通道表示,因为最开始BGR是标准,后来调整为RGB (b, g, r) = image[0, 0] print(\"Pixel at (0, 0) - Red: {}, Green: {}, Blue: {}\".format(r, g, b)) # 获取x=380,y=380的像素值,图像想象为M*N的矩阵,M为行,N为列 (b, g, r) = image[380, 380] print(\"Pixel at (380, 380) - Red: {}, Green: {}, Blue: {}\".format(r, g, b)) # 更新x=50,y=20的像素为红色 image[380, 380] = (0, 0, 255) (b, g, r) = image[380, 380] print(\"Pixel at (380, 380) - Red: {}, Green: {}, Blue: {}\".format(r, g, b)) # 计算图像的中心 (cX, cY) = (w // 2, h // 2) # 使用数组切片获取左上角1/4的部分 tl = image[0:cY, 0:cX] cv2.imshow(\"Top-Left Corner\", tl) # 同样的,用数组切片裁剪 右上角、左下角、右下角部分,并展示 tr = image[0:cY, cX:w] br = image[cY:h, cX:w] bl = image[cY:h, 0:cX] cv2.imshow(\"Top-Right Corner\", tr) cv2.imshow(\"Bottom-Right Corner\", br) cv2.imshow(\"Bottom-Left Corner\", bl) # 使用像素切片来更改像素区域的颜色 image[0:cY, 0:cX] = (0, 255, 0) # 展示更新像素后的图片 cv2.imshow(\"Updated (Top-Left Corner to Green)\", image) gray = cv2.cvtColor(origin, cv2.COLOR_BGR2GRAY) cv2.imshow(\"Gray\", gray) (h, w) = origin.shape[:2] zeros = np.zeros((h, w), dtype=\"uint8\") # 将origin分离为红色,绿色和蓝色通道, 然后我们使用Numpy 零数组分别构造每个通道的表示形式 (B, G, R) = cv2.split(origin) R = cv2.merge([zeros, zeros, R]) G = cv2.merge([zeros, G, zeros]) B = cv2.merge([B, zeros, zeros]) cv2.imshow(\"B G R\", np.hstack([B, G, R])) # 构建输出帧 原图在左上角 红色通道右上角 绿色通道右下角 蓝色通道左下角 output = np.zeros((h * 2, w * 2, 3), dtype=\"uint8\") output[0:h, 0:w] = origin output[0:h, w:w * 2] = R output[h:h * 2, 0:w] = G output[h:h * 2, w:w * 2] = B cv2.imshow(\"origin vs R vs G vs B\", imutils.resize(output, width=700)) alpha0 = np.dstack([origin, np.ones((h, w), dtype=\"uint8\") * 0]) cv2.imshow(\"alph 0\", alpha0) cv2.imwrite(\"alph 0.png\", alpha0) alpha1 = np.dstack([origin, np.ones((h, w), dtype=\"uint8\") * 255]) cv2.imshow(\"alph 255\", alpha1) cv2.imwrite(\"alph 255.png\", alpha1) cv2.waitKey(0)
参考 https://www.pyimagesearch.com/2021/01/20/opencv-getting-and-setting-pixels/
© 版权声明
THE END
暂无评论内容