import six import timeit#查找任何特定代码执行的确切时间 from ecdsa.curves import curves
#定义do函数,计算时间 def do(setup_statements, statement): # extracted from timeit.py t = timeit.Timer(stmt=statement, setup=\"\\n\".join(setup_statements)) # determine number so that 0.2 <= total time < 2.0 for i in range(1, 10): number = 10 ** i #**为次方 x = t.timeit(number) if x >= 0.2: break return x / number
NIST为数字测试套件关于NIST详解
GF§ (素数域)曲线,密钥长度为192、224、256、384和521bit
OpenSSL工具(openssl ecparam -list_curves
)所知道的这些曲线的 \”简称 \”是:prime192v1
、secp224r1
、prime256v1
、secp384r1
和secp521r1
。它包括比特币使用的256位曲线secp256k1。它还支持160到512位的Brainpool曲线的常规(非扭曲)变体。这些曲线的 \”简称 \”是:BrainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1, brainpoolP320r1, brainpoolP384r1, brainpoolP512r1。少数来自SEC标准的小曲线也包括在内(主要是为了加快库的测试),它们是:secp112r1, secp112r2, secp128r1, 和secp160r1。没有包括其他的曲线,但要增加对更多素数域的曲线的支持并不难。
#不是很懂 sep=\":\",unit=\"s\",form=\".5f\",form_inv=\".2f\", prnt_form = ( \"{name:>16}{sep:1} {siglen:>6} {keygen:>9{form}}{unit:1} \" \"{keygen_inv:>9{form_inv}} {sign:>9{form}}{unit:1} \" \"{sign_inv:>9{form_inv}} {verify:>9{form}}{unit:1} \" \"{verify_inv:>9{form_inv}} {verify_single:>13{form}}{unit:1} \" \"{verify_single_inv:>14{form_inv}}\" ) print( prnt_form.format( siglen=\"siglen\", keygen=\"keygen\", keygen_inv=\"keygen/s\", sign=\"sign\", sign_inv=\"sign/s\", verify=\"verify\", verify_inv=\"verify/s\", verify_single=\"no PC verify\", verify_single_inv=\"no PC verify/s\", name=\"\", sep=\"\", unit=\"\", form=\"\", form_inv=\"\", ) ) for curve in [i.name for i in curves]: S1 = \"import six; from ecdsa import SigningKey, %s\" % curve S2 = \"sk = SigningKey.generate(%s)\" % curve #产生私钥 S3 = \"msg = six.b(\'msg\')\" #消息 S4 = \"sig = sk.sign(msg)\" #签名 S5 = \"vk = sk.get_verifying_key()\"#公钥由私钥得出 get_verifying_key()函数 S6 = \"vk.precompute()\"#不懂 S7 = \"vk.verify(sig, msg)\"#用公钥验证签名 # 我们碰巧知道.generate()也在计算验证密钥,这是最耗时的部分。如果将代码改为懒惰地计算vk,我们就需要将这个基准改为在S5上循环,而不是在S2上。 keygen = do([S1], S2) sign = do([S1, S2, S3], S4) verf = do([S1, S2, S3, S4, S5, S6], S7) verf_single = do([S1, S2, S3, S4, S5], S7) import ecdsa c = getattr(ecdsa, curve)#从名字上看获取属性值 sig = ecdsa.SigningKey.generate(c).sign(six.b(\"msg\")) #密钥对(keygen)、签署数据(sign)、验证这些签名(verify)、共享秘密(ecdh)以及在没有特定密钥预计算的情况下验证签名(no PC verify)、原始签名的大小(通常是签名可以被编码的最小方式)也在siglen栏中提供 print( prnt_form.format( name=curve,#所有的曲线 sep=\":\", siglen=len(sig), unit=\"s\", keygen=keygen, keygen_inv=1.0 / keygen, sign=sign, sign_inv=1.0 / sign, verify=verf, verify_inv=1.0 / verf, verify_single=verf_single, verify_single_inv=1.0 / verf_single, form=\".5f\",#小数点后面为5位 form_inv=\".2f\",#小数点后面为2位 ) )
print(\"\")
ED25519和Cureve5519
ecdh_form = \"{name:>16}{sep:1} {ecdh:>9{form}}{unit:1} {ecdh_inv:>9{form_inv}}\" print( ecdh_form.format( ecdh=\"ecdh\", ecdh_inv=\"ecdh/s\", name=\"\", sep=\"\", unit=\"\", form=\"\", form_inv=\"\", ) ) for curve in [i.name for i in curves]: if curve == \"Ed25519\" or curve == \"Ed448\": continue S1 = \"from ecdsa import SigningKey, ECDH, {0}\".format(curve) S2 = \"our = SigningKey.generate({0})\".format(curve)#私钥 S3 = \"remote = SigningKey.generate({0}).verifying_key\".format(curve)#公钥 S4 = \"ecdh = ECDH(private_key=our, public_key=remote)\" S5 = \"ecdh.generate_sharedsecret_bytes()\"#产生共享密钥 ecdh = do([S1, S2, S3, S4], S5) print( ecdh_form.format( name=curve, sep=\":\", unit=\"s\", form=\".5f\", form_inv=\".2f\", ecdh=ecdh, ecdh_inv=1.0 / ecdh, ) )
from ecdsa import SigningKey sk = SigningKey.generate() # uses NIST192p生成私钥 vk = sk.verifying_key#在私钥的基础上生成公钥 signature = sk.sign(b\"message\")#用私钥对消息进行签名 assert vk.verify(signature, b\"message\")#用公钥去验证。assert为一断言函数:不满足条件直接触发异常忙不执行接下来的代码,括号中为condition
from ecdsa import SigningKey, NIST384p#384位NIST素域椭圆曲线,其中私钥/公钥都与特定的曲线相关联,更长的曲线更安全,但时间长,密钥和签名也长 sk = SigningKey.generate(curve=NIST384p) vk = sk.verifying_key signature = sk.sign(b\"message\") assert vk.verify(signature, b\"message\")
#将签名密钥(私钥)序列化成不同的格式。 from ecdsa import SigningKey, NIST384p sk = SigningKey.generate(curve=NIST384p) sk_string = sk.to_string()#最短的调用,然后再重新创建私钥。to_string():将括号内的数字转化为字符串,实际返回的类型bytes sk2 = SigningKey.from_string(sk_string, curve=NIST384p)#重新创建私钥,第一个参数是我们要处理的字符,如果点编码无效或不在指定曲线上,from_string()将引发MalformedPointError print(sk_string.hex()) print(sk2.to_string().hex())
from ecdsa import SigningKey, NIST384p sk = SigningKey.generate(curve=NIST384p) sk_pem = sk.to_pem()#sk.to_pem()和sk.to_der()将把签名密钥序列化为OpenSSL使用的相同格式 sk2 = SigningKey.from_pem(sk_pem)#SigningKey.from_pem()/.from_der()将撤销这种序列化。这些格式包括了曲线名称,所以你不需要向反序列化器传递曲线标识符。如果文件是畸形的,from_der()和from_pem()将引发UnexpectedDER或MalformedPointError。 # sk and sk2 are the same key
from ecdsa import SigningKey, VerifyingKey, NIST384p sk = SigningKey.generate(curve=NIST384p) vk = sk.verifying_key vk_string = vk.to_string()#公钥可以用同样的方式进行序列化 vk2 = VerifyingKey.from_string(vk_string, curve=NIST384p) # vk and vk2 are the same key
from ecdsa import SigningKey, VerifyingKey, NIST384p sk = SigningKey.generate(curve=NIST384p) vk = sk.verifying_key vk_pem = vk.to_pem() vk2 = VerifyingKey.from_pem(vk_pem) # vk and vk2 are the same key
import os from ecdsa import NIST384p, SigningKey from ecdsa.util import randrange_from_seed__trytryagain#产生随机数 def make_key(seed): secexp = randrange_from_seed__trytryagain(seed, NIST384p.order) return SigningKey.from_secret_exponent(secexp, curve=NIST384p) seed = os.urandom(NIST384p.baselen) # or other starting point,返回一个适合加密的比特串 sk1a = make_key(seed) sk1b = make_key(seed) # note: sk1a and sk1b are the same key assert sk1a.to_string() == sk1b.to_string() sk2 = make_key(b\"2-\"+seed) # different key b为比特 assert sk1a.to_string() != sk2.to_string() from ecdsa import SigningKey, NIST384p sk = SigningKey.generate(curve=NIST384p) vk = sk.verifying_key vk.precompute() signature = sk.sign(b\"message\") assert vk.verify(signature, b\"message\")
# openssl ecparam -name prime256v1 -genkey -out sk.pem # openssl ec -in sk.pem -pubout -out vk.pem # echo \"data for signing\" > data # openssl dgst -sha256 -sign sk.pem -out data.sig data # openssl dgst -sha256 -verify vk.pem -signature data.sig data # openssl dgst -sha256 -prverify sk.pem -signature data.sig data #OpenSSL 使用 PEM 文件格式存储证书和密钥。PEM 实质上是 Base64 编码的二进制内容 import hashlib# from ecdsa import SigningKey, VerifyingKey from ecdsa.util import sigencode_der, sigdecode_der#从ecdsa.util写入和读取签名 with open(\"vk.pem\") as f:#公钥文件 vk = VerifyingKey.from_pem(f.read()) with open(\"data\", \"rb\") as f:#open()为读取模式,with语句直接调用close方法,r为读模式,w/wb为写模式,rb模式打开二进制文件,消息data data = f.read() with open(\"data.sig\", \"rb\") as f:#消息签名可读模式 signature = f.read() assert vk.verify(signature, data, hashlib.sha256, sigdecode=sigdecode_der)#公钥验证签名, with open(\"sk.pem\") as f:#私钥文件 sk = SigningKey.from_pem(f.read(), hashlib.sha256) new_signature = sk.sign_deterministic(data, sigencode=sigencode_der)#用私钥签名生成一个新的签名 with open(\"data.sig2\", \"wb\") as f:#写模式 f.write(new_signature)
# openssl dgst -sha256 -verify vk.pem -signature data.sig2 data #如果需要与OpenSSL 1.0.0或更早的版本兼容,可以使用ecdsa.util中的sigencode_string和sigdecode_string来分别写入和读取签名。 from ecdsa import SigningKey, VerifyingKey with open(\"sk.pem\") as f: sk = SigningKey.from_pem(f.read()) with open(\"sk.pem\", \"wb\") as f: f.write(sk.to_pem()) with open(\"vk.pem\") as f: vk = VerifyingKey.from_pem(f.read()) with open(\"vk.pem\", \"wb\") as f: f.write(vk.to_pem())
#ecdsa.util.PRNG 工具在这里很方便:它需要一个种子并从中产生一个强的伪随机流。 #os.urandom的函数作为entropy=参数来做不同的事情 #ECDSA的签名生成也需要一个随机数,而且每个签名都必须使用不同的随机数(两次使用相同的数字会立即暴露出私人签名密钥)。 # sk.sign()方法需要一个entropy=参数,其行为与SigningKey.generate(entropy=)相同。 from ecdsa.util import PRNG from ecdsa import SigningKey rng1 = PRNG(b\"seed\") sk1 = SigningKey.generate(entropy=rng1) rng2 = PRNG(b\"seed\") sk2 = SigningKey.generate(entropy=rng2) # sk1 and sk2 are the same key
#如果你调用SigningKey.sign_deterministic(data)而不是.sign(data),代码将生成一个确定性的签名,而不是随机的。 # 这使用RFC6979中的算法来安全地生成一个唯一的K值,该值来自于私钥和被签名的信息。每次你用相同的密钥签署相同的信息时,你将得到相同的签名(使用相同的k)。 #创建一个NIST521p密钥对 from ecdsa import SigningKey, NIST521p sk = SigningKey.generate(curve=NIST521p) vk = sk.verifying_key #从一个主种子创建三个独立的签名密钥 from ecdsa import NIST192p, SigningKey from ecdsa.util import randrange_from_seed__trytryagain def make_key_from_seed(seed, curve=NIST192p): secexp = randrange_from_seed__trytryagain(seed, curve.order) return SigningKey.from_secret_exponent(secexp, curve) sk1 = make_key_from_seed(\"1:%s\" % seed) sk2 = make_key_from_seed(\"2:%s\" % seed) sk3 = make_key_from_seed(\"3:%s\" % seed) #从磁盘上加载一个验证密钥,并使用十六进制编码以未压缩和压缩的格式打印出来(在X9.62和SEC1标准中定义)。 from ecdsa import VerifyingKey with open(\"public.pem\") as f:#加载验证密钥 vk = VerifyingKey.from_pem(f.read()) print(\"uncompressed: {0}\".format(vk.to_string(\"uncompressed\").hex())) print(\"compressed: {0}\".format(vk.to_string(\"compressed\").hex())) #从压缩格式的十六进制字符串中加载验证密钥,以未压缩的格式输出。 from ecdsa import VerifyingKey, NIST256p comp_str = \'022799c0d0ee09772fdd337d4f28dc155581951d07082fb19a38aa396b67e77759\' vk = VerifyingKey.from_string(bytearray.fromhex(comp_str), curve=NIST256p) print(vk.to_string(\"uncompressed\").hex()) #与远程方进行ECDH密钥交换。 from ecdsa import ECDH, NIST256p ecdh = ECDH(curve=NIST256p) ecdh.generate_private_key() local_public_key = ecdh.get_public_key() #send `local_public_key` to remote party and receive `remote_public_key` from remote party with open(\"remote_public_key.pem\") as e: remote_public_key = e.read() ecdh.load_received_public_key_pem(remote_public_key) secret = ecdh.generate_sharedsecret_bytes()
总结
本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注的更多内容!
© 版权声明
THE END
暂无评论内容