目录
前言
在想题材之际,打开私信,有许多萌新&小伙伴询问我之前写的一篇《python爬取天气预报数据,并实现数据可视化》中的bug怎么解决,虽然我在之前,就在评论区提供了自己的解决思路,但可能不够清楚,于是写这篇文章,来解决bug,并对程序进行优化。
结果展示
其中:
红线代表当天最高气温,蓝线代表最低气温,最高气温点上的标注为当天的天气情况。
如果使夜晚运行程序,则最高气温和最低气温的点会重合,使由爬取数据产生误差导致的。
程序代码
详细请看注释
# -*- coding: UTF-8 -*- \"\"\" # @Time: 2022/1/4 11:02 # @Author: 远方的星 # @CSDN: https://blog.csdn.net/qq_44921056 \"\"\" import chardet import requests from lxml import etree from fake_useragent import UserAgent import pandas as pd from matplotlib import pyplot as plt # 随机产生请求头 ua = UserAgent(verify_ssl=False, path=\'D:/Pycharm/fake_useragent.json\') # 随机切换请求头 def random_ua(): headers = { \"user-agent\": ua.random } return headers # 解析页面 def res_text(url): res = requests.get(url=url, headers=random_ua()) res.encoding = chardet.detect(res.content)[\'encoding\'] response = res.text html = etree.HTML(response) return html # 获得未来七天及八到十五天的页面链接 def get_url(url): html = res_text(url) url_7 = \'http://www.weather.com.cn/\' + html.xpath(\'//*[@id=\"someDayNav\"]/li[2]/a/@href\')[0] url_8_15 = \'http://www.weather.com.cn/\' + html.xpath(\'//*[@id=\"someDayNav\"]/li[3]/a/@href\')[0] # print(url_7) # print(url_8_15) return url_7, url_8_15 # 获取未来七天的天气情况 def get_data_7(url): html = res_text(url) list_s = html.xpath(\'//*[@id=\"7d\"]/ul/li\') # 获取天气数据列表 Date, Weather, Low, High = [], [], [], [] for i in range(len(list_s)): list_date = list_s[i].xpath(\'./h1/text()\')[0] # 获取日期,如:4日(明天) # print(list_data) list_weather = list_s[i].xpath(\'./p[1]/@title\')[0] # 获取天气情况,如:小雨转雨夹雪 # print(list_weather) tem_low = list_s[i].xpath(\'./p[2]/i/text()\') # 获取最低气温 tem_high = list_s[i].xpath(\'./p[2]/span/text()\') # 获取最高气温 if tem_high == []: # 遇到夜晚情况,筛掉当天的最高气温 tem_high = tem_low # 无最高气温时,使最高气温等于最低气温 tem_low = int(tem_low[0].replace(\'℃\', \'\')) # 将气温数据处理 tem_high = int(tem_high[0].replace(\'℃\', \'\')) # print(type(tem_high)) Date.append(list_date), Weather.append(list_weather), Low.append(tem_low), High.append(tem_high) excel = pd.DataFrame() # 定义一个二维列表 excel[\'日期\'] = Date excel[\'天气\'] = Weather excel[\'最低气温\'] = Low excel[\'最高气温\'] = High # print(excel) return excel def get_data_8_15(url): html = res_text(url) list_s = html.xpath(\'//*[@id=\"15d\"]/ul/li\') Date, Weather, Low, High = [], [], [], [] for i in range(len(list_s)): # data_s[0]是日期,如:周二(11日),data_s[1]是天气情况,如:阴转晴,data_s[2]是最低温度,如:/-3℃ data_s = list_s[i].xpath(\'./span/text()\') # print(data_s) date = modify_str(data_s[0]) # 获取日期情况 weather = data_s[1] low = int(data_s[2].replace(\'/\', \'\').replace(\'℃\', \'\')) high = int(list_s[i].xpath(\'./span/em/text()\')[0].replace(\'℃\', \'\')) # print(date, weather, low, high) Date.append(date), Weather.append(weather), Low.append(low), High.append(high) # print(Date, Weather, Low, High) excel = pd.DataFrame() # 定义一个二维列表 excel[\'日期\'] = Date excel[\'天气\'] = Weather excel[\'最低气温\'] = Low excel[\'最高气温\'] = High # print(excel) return excel # 将8-15天日期格式改成与未来7天一致 def modify_str(date): date_1 = date.split(\'(\') date_2 = date_1[1].replace(\')\', \'\') date_result = date_2 + \'(\' + date_1[0] + \')\' return date_result # 实现数据可视化 def get_image(date, weather, high, low): # 用来正常显示中文标签 plt.rcParams[\'font.sans-serif\'] = [\'SimHei\'] # 用来正常显示负号 plt.rcParams[\'axes.unicode_minus\'] = False # 根据数据绘制图形 fig = plt.figure(dpi=128, figsize=(10, 6)) ax = fig.add_subplot(111) plt.plot(date, high, c=\'red\', alpha=0.5, marker=\'*\') plt.plot(date, low, c=\'blue\', alpha=0.5, marker=\'o\') # 给图表中两条折线中间的部分上色 plt.fill_between(date, high, low, facecolor=\'blue\', alpha=0.2) # 设置图表格式 plt.title(\'邳州近15天天气预报\', fontsize=24) plt.xlabel(\'日期\', fontsize=12) # 绘制斜的标签,以免重叠 fig.autofmt_xdate() plt.ylabel(\'气温\', fontsize=12) # 参数刻度线设置 plt.tick_params(axis=\'both\', which=\'major\', labelsize=10) # 修改刻度 plt.xticks(date[::1]) # 对点进行标注,在最高气温点处标注当天的天气情况 for i in range(15): ax.annotate(weather[i], xy=(date[i], high[i])) # 显示图片 plt.show() def main(): base_url = \'http://www.weather.com.cn/weather1d/101190805.shtml\' url_7, url_8_15 = get_url(base_url) data_1 = get_data_7(url_7) data_2 = get_data_8_15(url_8_15) data = pd.concat([data_1, data_2], axis=0, ignore_index=True) # ignore_index=True实现两张表拼接,不保留原索引 get_image(data[\'日期\'], data[\'天气\'], data[\'最高气温\'], data[\'最低气温\']) if __name__ == \'__main__\': main()
期望
这是以一个城市为例的可视化,下次争取做到根据输入的城市进行天气预报可视化
© 版权声明
THE END
暂无评论内容