Python+Flask编写一个简单的行人检测API

目录

前提条件

1.了解Python语言,并会安装第三方库

2.了解Python Web Flask框架

3.了解PyTorch深度学习框架

实验环境

  • Python 3.6.2
  • PyTorch 1.7.1
  • Flask 1.1.1
  • Numpy 1.18.5
  • Opencv 3.4.2
  • PIL pip3 install pillow

项目结构

Python+Flask编写一个简单的行人检测API

相关说明:

  1. static:用于存储静态文件,比如css、js和图片等
  2. templates:存放模板文件
  3. upload:用于保存上传文件
  4. flask_app.py: 应用程序主文件
  5. predict.py:预测文件

主要代码

完整代码,暂时没空整理,如整理完,后续会发布,敬请期待!

#!/usr/bin/python
# -*- coding: UTF-8 -*-
import imp
from flask import request, jsonify, send_from_directory, abort
from werkzeug.utils import secure_filename
from flask import Flask, render_template, jsonify, request
from predict import pre
import time
import os
import base64

app = Flask(__name__)
UPLOAD_FOLDER = \'upload\'
app.config[\'UPLOAD_FOLDER\'] = UPLOAD_FOLDER
basedir = os.path.abspath(os.path.dirname(__file__))
ALLOWED_EXTENSIONS = set([\'txt\', \'png\', \'jpg\', \'xls\', \'JPG\', \'PNG\', \'xlsx\', \'gif\', \'GIF\'])


# 用于判断文件后缀
def allowed_file(filename):
    return \'.\' in filename and filename.rsplit(\'.\', 1)[1] in ALLOWED_EXTENSIONS


# 上传
@app.route(\'/upload\')
def upload_test():
    return render_template(\'upload.html\')


@app.route(\"/api/download/<filename>\", methods=[\'GET\'])
def download(filename):
    if request.method == \"GET\":
        if os.path.isfile(os.path.join(\'upload\', filename)):
            return send_from_directory(\'upload\', filename, as_attachment=True)
        abort(404)


# 上传文件
@app.route(\'/api/upload\', methods=[\'POST\'], strict_slashes=False)
def api_upload():
    file_dir = os.path.join(basedir, app.config[\'UPLOAD_FOLDER\'])
    if not os.path.exists(file_dir):
        os.makedirs(file_dir)
    f = request.files[\'myfile\']  # 从表单的file字段获取文件,myfile为该表单的name值
    if f and allowed_file(f.filename):  # 判断是否是允许上传的文件类型
        fname = secure_filename(f.filename)
        print(fname)
        ext = fname.rsplit(\'.\', 1)[1]  # 获取文件后缀
        unix_time = int(time.time())
        new_filename = str(unix_time) + \'.\' + ext  # 修改了上传的文件名
        f.save(os.path.join(file_dir, new_filename))  # 保存文件到upload目录
        img_path = os.path.join(\"upload\", new_filename)
        print(img_path)
        pre_result = pre(img_path)
        print(pre_result)
        token = base64.b64encode(new_filename.encode(\'utf-8\'))
        print(token)
        return jsonify({\"code\": 0, \"errmsg\": \"OK\", \"token\": token, \"fileName\": \"/api/download/\" + new_filename,\"detect_result:\":pre_result})
    else:
        return jsonify({\"code\": 1001, \"errmsg\": \"ERROR\"})


if __name__ == \'__main__\':
	app.run(host=\"0.0.0.0\",port=\"5000\",threaded=True,debug=False)
<!DOCTYPE html>
<html>
	<head>
		<meta charset=\"UTF-8\">
		<link href=\"{{url_for(\'static\', filename=\'obj_classification.css\')}}\" rel=\"external nofollow\"  rel=\"stylesheet\" type=\"text/css\" />
		<title>图片识别--Person</title>
	</head>
	<body>
		<h1>图片识别--Person</h1>
		<div class=\"container\">
			<div class=\"choose\">
				<form action=\"http://IP地址:5000/api/upload\" enctype=\'multipart/form-data\' method=\'POST\'>
					<input type=\"file\" name=\"myfile\" class=\"input-new\" style=\"margin-top:20px;\" />
					<input type=\"submit\" value=\"识别图片\" class=\"button-new\" style=\"margin-top:15px;\" />
				</form>
			</div>
			<div class=\"display\">
				<img src=\"{{ url_for(\'static\', filename=\'images/test.jpg\',_t=val1) }}\" width=\"400\" height=\"500\" alt=\"图片\" />
			</div>
		</div>
	</body>
</html>

运行结果

Python+Flask编写一个简单的行人检测API

Python+Flask编写一个简单的行人检测API

Python+Flask编写一个简单的行人检测API

{
  \"code\": 0,
  \"detect_result:\": [
    {
      \"bbox\": [
        51.0,
        265.0,
        543.0,
        437.0
      ],
      \"class\": \"b\'person 0.78\'\"
    },
    {
      \"bbox\": [
        43.0,
        433.0,
        543.0,
        609.0
      ],
      \"class\": \"b\'person 0.77\'\"
    },
    {
      \"bbox\": [
        44.0,
        133.0,
        543.0,
        309.0
      ],
      \"class\": \"b\'person 0.76\'\"
    },
    {
      \"bbox\": [
        46.0,
        526.0,
        543.0,
        665.0
      ],
      \"class\": \"b\'person 0.74\'\"
    },
    {
      \"bbox\": [
        107.0,
        51.0,
        525.0,
        181.0
      ],
      \"class\": \"b\'person 0.62\'\"
    }
  ],
  \"errmsg\": \"OK\",
  \"fileName\": \"/api/download/1645974252.jpg\",
  \"token\": \"MTY0NTk3NDI1Mi5qcGc=\"
}

Python+Flask编写一个简单的行人检测API

以上就是Python+Flask编写一个简单的行人检测API的详细内容,更多关于Python Flask行人检测的资料请关注其它相关文章!

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容