目录
前提条件
1.了解Python语言,并会安装第三方库
2.了解Python Web Flask框架
3.了解PyTorch深度学习框架
实验环境
- Python 3.6.2
- PyTorch 1.7.1
- Flask 1.1.1
- Numpy 1.18.5
- Opencv 3.4.2
- PIL pip3 install pillow
项目结构
相关说明:
- static:用于存储静态文件,比如css、js和图片等
- templates:存放模板文件
- upload:用于保存上传文件
- flask_app.py: 应用程序主文件
- predict.py:预测文件
主要代码
完整代码,暂时没空整理,如整理完,后续会发布,敬请期待!
#!/usr/bin/python # -*- coding: UTF-8 -*- import imp from flask import request, jsonify, send_from_directory, abort from werkzeug.utils import secure_filename from flask import Flask, render_template, jsonify, request from predict import pre import time import os import base64 app = Flask(__name__) UPLOAD_FOLDER = \'upload\' app.config[\'UPLOAD_FOLDER\'] = UPLOAD_FOLDER basedir = os.path.abspath(os.path.dirname(__file__)) ALLOWED_EXTENSIONS = set([\'txt\', \'png\', \'jpg\', \'xls\', \'JPG\', \'PNG\', \'xlsx\', \'gif\', \'GIF\']) # 用于判断文件后缀 def allowed_file(filename): return \'.\' in filename and filename.rsplit(\'.\', 1)[1] in ALLOWED_EXTENSIONS # 上传 @app.route(\'/upload\') def upload_test(): return render_template(\'upload.html\') @app.route(\"/api/download/<filename>\", methods=[\'GET\']) def download(filename): if request.method == \"GET\": if os.path.isfile(os.path.join(\'upload\', filename)): return send_from_directory(\'upload\', filename, as_attachment=True) abort(404) # 上传文件 @app.route(\'/api/upload\', methods=[\'POST\'], strict_slashes=False) def api_upload(): file_dir = os.path.join(basedir, app.config[\'UPLOAD_FOLDER\']) if not os.path.exists(file_dir): os.makedirs(file_dir) f = request.files[\'myfile\'] # 从表单的file字段获取文件,myfile为该表单的name值 if f and allowed_file(f.filename): # 判断是否是允许上传的文件类型 fname = secure_filename(f.filename) print(fname) ext = fname.rsplit(\'.\', 1)[1] # 获取文件后缀 unix_time = int(time.time()) new_filename = str(unix_time) + \'.\' + ext # 修改了上传的文件名 f.save(os.path.join(file_dir, new_filename)) # 保存文件到upload目录 img_path = os.path.join(\"upload\", new_filename) print(img_path) pre_result = pre(img_path) print(pre_result) token = base64.b64encode(new_filename.encode(\'utf-8\')) print(token) return jsonify({\"code\": 0, \"errmsg\": \"OK\", \"token\": token, \"fileName\": \"/api/download/\" + new_filename,\"detect_result:\":pre_result}) else: return jsonify({\"code\": 1001, \"errmsg\": \"ERROR\"}) if __name__ == \'__main__\': app.run(host=\"0.0.0.0\",port=\"5000\",threaded=True,debug=False)
<!DOCTYPE html> <html> <head> <meta charset=\"UTF-8\"> <link href=\"{{url_for(\'static\', filename=\'obj_classification.css\')}}\" rel=\"external nofollow\" rel=\"stylesheet\" type=\"text/css\" /> <title>图片识别--Person</title> </head> <body> <h1>图片识别--Person</h1> <div class=\"container\"> <div class=\"choose\"> <form action=\"http://IP地址:5000/api/upload\" enctype=\'multipart/form-data\' method=\'POST\'> <input type=\"file\" name=\"myfile\" class=\"input-new\" style=\"margin-top:20px;\" /> <input type=\"submit\" value=\"识别图片\" class=\"button-new\" style=\"margin-top:15px;\" /> </form> </div> <div class=\"display\"> <img src=\"{{ url_for(\'static\', filename=\'images/test.jpg\',_t=val1) }}\" width=\"400\" height=\"500\" alt=\"图片\" /> </div> </div> </body> </html>
运行结果
{ \"code\": 0, \"detect_result:\": [ { \"bbox\": [ 51.0, 265.0, 543.0, 437.0 ], \"class\": \"b\'person 0.78\'\" }, { \"bbox\": [ 43.0, 433.0, 543.0, 609.0 ], \"class\": \"b\'person 0.77\'\" }, { \"bbox\": [ 44.0, 133.0, 543.0, 309.0 ], \"class\": \"b\'person 0.76\'\" }, { \"bbox\": [ 46.0, 526.0, 543.0, 665.0 ], \"class\": \"b\'person 0.74\'\" }, { \"bbox\": [ 107.0, 51.0, 525.0, 181.0 ], \"class\": \"b\'person 0.62\'\" } ], \"errmsg\": \"OK\", \"fileName\": \"/api/download/1645974252.jpg\", \"token\": \"MTY0NTk3NDI1Mi5qcGc=\" }
以上就是Python+Flask编写一个简单的行人检测API的详细内容,更多关于Python Flask行人检测的资料请关注其它相关文章!
© 版权声明
THE END
暂无评论内容