pyspark自定义UDAF函数调用报错问题解决

目录

问题场景:

在SparkSQL中,因为需要用到自定义的UDAF函数,所以用pyspark自定义了一个,但是遇到了一个问题,就是自定义的UDAF函数一直报

AttributeError: \'NoneType\' object has no attribute \'_jvm\'

在此将解决过程记录下来

问题描述

在新建的py文件中,先自定义了一个UDAF函数,然后在 if __name__ == '__main__': 中调用,死活跑不起来,一遍又一遍的对源码,看起来自定义的函数也没错:过程如下:

import decimal
import os
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
os.environ[\'SPARK_HOME\'] = \'/export/server/spark\'
os.environ[\"PYSPARK_PYTHON\"] = \"/root/anaconda3/bin/python\"
os.environ[\"PYSPARK_DRIVER_PYTHON\"] = \"/root/anaconda3/bin/python\"
@F.pandas_udf(\'decimal(17,12)\')
def udaf_lx(qx: pd.Series, lx: pd.Series) -> decimal:
    # 初始值 也一定是decimal类型
    tmp_qx = decimal.Decimal(0)
    tmp_lx = decimal.Decimal(0)
    for index in range(0, qx.size):
        if index == 0:
            tmp_qx = decimal.Decimal(qx[index])
            tmp_lx = decimal.Decimal(lx[index])
        else:
            # 计算lx: 计算后,保证数据小数位为12位,与返回类型的设置小数位保持一致
            tmp_lx = (tmp_lx * (1 - tmp_qx)).quantize(decimal.Decimal(\'0.000000000000\'))
            tmp_qx = decimal.Decimal(qx[index])
    return tmp_lx
if __name__ == \'__main__\':
    # 1) 创建 SparkSession 对象,此对象连接 hive
    spark = SparkSession.builder.master(\'local[*]\') \\
        .appName(\'insurance_main\') \\
        .config(\'spark.sql.shuffle.partitions\', 4) \\
        .config(\'spark.sql.warehouse.dir\', \'hdfs://node1:8020/user/hive/warehouse\') \\
        .config(\'hive.metastore.uris\', \'thrift://node1:9083\') \\
        .enableHiveSupport() \\
        .getOrCreate()
    # 注册UDAF 支持在SQL中使用
    spark.udf.register(\'udaf_lx\', udaf_lx)
    # 2) 编写SQL 执行
    excuteSQLFile(spark, \'_04_insurance_dw_prem_std.sql\')

然后跑起来就报了以下错误:

Traceback (most recent call last):
  File \"/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py\", line 835, in _parse_datatype_string
    return from_ddl_datatype(s)
  File \"/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py\", line 827, in from_ddl_datatype
    sc._jvm.org.apache.spark.sql.api.python.PythonSQLUtils.parseDataType(type_str).json())
AttributeError: \'NoneType\' object has no attribute \'_jvm\'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
  File \"/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py\", line 839, in _parse_datatype_string
    return from_ddl_datatype(\"struct<%s>\" % s.strip())
  File \"/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py\", line 827, in from_ddl_datatype
    sc._jvm.org.apache.spark.sql.api.python.PythonSQLUtils.parseDataType(type_str).json())
AttributeError: \'NoneType\' object has no attribute \'_jvm\'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
  File \"/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py\", line 841, in _parse_datatype_string
    raise e
  File \"/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py\", line 831, in _parse_datatype_string
    return from_ddl_schema(s)
  File \"/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py\", line 823, in from_ddl_schema
    sc._jvm.org.apache.spark.sql.types.StructType.fromDDL(type_str).json())
AttributeError: \'NoneType\' object has no attribute \'_jvm\'

我左思右想,百思不得骑姐,嗐,跑去看 types.py里面的type类型,以为我的 udaf_lx 函数的装饰器里面的 ‘decimal(17,12)’ 类型错了,但是一看,好家伙,types.py 里面的774行

_FIXED_DECIMAL = re.compile(r\"decimal\\(\\s*(\\d+)\\s*,\\s*(-?\\d+)\\s*\\)\")

这是能匹配上的,没道理啊!

原因分析及解决方案:

然后再往回看报错的信息的最后一行:

AttributeError: \'NoneType\' object has no attribute \'_jvm\'

竟然是空对象没有_jvm这个属性!

一拍脑瓜子,得了,pyspark的SQL 在执行的时候,需要用到 JVM ,而运行pyspark的时候,需要先要为spark提供环境,也就说,内存中要有SparkSession对象,而python在执行的时候,是从上往下,将方法加载到内存中,在加载自定义的UDAF函数时,由于有装饰器@F.pandas_udf的存在 , F 则是pyspark.sql.functions, 此时加载自定义的UDAF到内存中,需要有SparkSession的环境提供JVM,而此时的内存中尚未有SparkSession环境!因此,将自定义的UDAF 函数挪到 if __name__ == '__main__': 创建完SparkSession的后面,如下:

import decimal
import os
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
os.environ[\'SPARK_HOME\'] = \'/export/server/spark\'
os.environ[\"PYSPARK_PYTHON\"] = \"/root/anaconda3/bin/python\"
os.environ[\"PYSPARK_DRIVER_PYTHON\"] = \"/root/anaconda3/bin/python\"
if __name__ == \'__main__\':
    # 1) 创建 SparkSession 对象,此对象连接 hive
    spark = SparkSession.builder.master(\'local[*]\') \\
        .appName(\'insurance_main\') \\
        .config(\'spark.sql.shuffle.partitions\', 4) \\
        .config(\'spark.sql.warehouse.dir\', \'hdfs://node1:8020/user/hive/warehouse\') \\
        .config(\'hive.metastore.uris\', \'thrift://node1:9083\') \\
        .enableHiveSupport() \\
        .getOrCreate()
    @F.pandas_udf(\'decimal(17,12)\')
    def udaf_lx(qx: pd.Series, lx: pd.Series) -> decimal:
        # 初始值 也一定是decimal类型
        tmp_qx = decimal.Decimal(0)
        tmp_lx = decimal.Decimal(0)
        for index in range(0, qx.size):
            if index == 0:
                tmp_qx = decimal.Decimal(qx[index])
                tmp_lx = decimal.Decimal(lx[index])
            else:
                # 计算lx: 计算后,保证数据小数位为12位,与返回类型的设置小数位保持一致
                tmp_lx = (tmp_lx * (1 - tmp_qx)).quantize(decimal.Decimal(\'0.000000000000\'))
                tmp_qx = decimal.Decimal(qx[index])
        return tmp_lx
    # 注册UDAF 支持在SQL中使用
    spark.udf.register(\'udaf_lx\', udaf_lx)
    # 2) 编写SQL 执行
    excuteSQLFile(spark, \'_04_insurance_dw_prem_std.sql\')

运行结果如图:

pyspark自定义UDAF函数调用报错问题解决

至此,完美解决!更多关于pyspark自定义UDAF函数报错的资料请关注其它相关文章!

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容