目录
一个简单的tokenizer
分词(tokenization)任务是Python字符串处理中最为常见任务了。我们这里讲解用正则表达式构建简单的表达式分词器(tokenizer),它能够将表达式字符串从左到右解析为标记(tokens)流。
给定如下的表达式字符串:
text = \'foo = 12 + 5 * 6\'
我们想要将其转换为下列以序列对呈现的分词结果:
tokens = [(\'NAME\', \'foo\'), (\'EQ\', \'=\'), (\'NUM\', \'12\'), (\'PLUS\', \'+\'),\\ (\'NUM\', \'5\'), (\'TIMES\', \'*\'), (\'NUM\', \'6\')]
要完成这样的分词操作,我们首先需要定义出所有可能的标记模式(所谓模式(pattern),为用来描述或者匹配/系列匹配某个句法规则的字符串,这里我们用正则表达式来做为模式),注意此处要包括空格whitespace,否则字符串中出现任何模式中没有的字符后,扫描就会停止。因为我们还需要给标记以NAME、EQ等名称,我们采用正则表达式中的命名捕获组来实现。
import re NAME = r\'(?P<NAME>[a-zA-Z_][a-zA-Z_0-9]*)\' # 这里?P<NAME>表示模式名称,()表示一个正则表达式捕获组,合在一起即一个命名捕获组 EQ = r\'(?P<EQ>=)\' NUM = r\'(?P<NUM>\\d+)\' #\\d表示匹配数字,+表示任意数量 PLUS = r\'(?P<PLUS>\\+)\' #需要用\\转义 TIMES = r\'(?P<TIMES>\\*)\' #需要用\\转义 WS = r\'(?P<WS>\\s+)\' #\\s表示匹配空格, +表示任意数量 master_pat = re.compile(\"|\".join([NAME, EQ, NUM, PLUS, TIMES, WS])) # | 用于选择多个模式,表示\"或\"
接下来我们用模式对象中的scanner()方法来完成分词操作,该方法创建一个扫描对象:
scanner = master_pat.scanner(text)
然后可以用match()方法获取单次匹配结果,一次匹配一个模式:
scanner = master_pat.scanner(text) m = scanner.match() print(m.lastgroup, m.group()) # NAME foo m = scanner.match() print(m.lastgroup, m.group()) # WS
当然这样一次一次调用过于麻烦,我们可以使用迭代器来批量调用,并将单次迭代结果以具名元组形式存储
Token = namedtuple(\'Token\', [\'type\', \'value\']) def generate_tokens(pat, text): scanner = pat.scanner(text) for m in iter(scanner.match, None): #scanner.match做为迭代器每次调用的方法, #None为哨兵的默认值,表示迭代到None停止 yield Token(m.lastgroup, m.group()) for tok in generate_tokens(master_pat, \"foo = 42\"): print(tok)
最终显示表达式串"foo = 12 + 5 * 6"
的tokens流为:
Token(type=\'NAME\', value=\'foo\') Token(type=\'WS\', value=\' \') Token(type=\'EQ\', value=\'=\') Token(type=\'WS\', value=\' \') Token(type=\'NUM\', value=\'12\') Token(type=\'WS\', value=\' \') Token(type=\'PLUS\', value=\'+\') Token(type=\'WS\', value=\' \') Token(type=\'NUM\', value=\'5\') Token(type=\'WS\', value=\' \') Token(type=\'TIMES\', value=\'*\') Token(type=\'WS\', value=\' \') Token(type=\'NUM\', value=\'6\')
过滤tokens流
接下来我们想要过滤掉空格标记,使用生成器表达式即可:
tokens = (tok for tok in generate_tokens(master_pat, \"foo = 12 + 5 * 6\") if tok.type != \'WS\') for tok in tokens: print(tok)
可以看到空格被成功过滤:
Token(type=\'NAME\', value=\'foo\') Token(type=\'EQ\', value=\'=\') Token(type=\'NUM\', value=\'12\') Token(type=\'PLUS\', value=\'+\') Token(type=\'NUM\', value=\'5\') Token(type=\'TIMES\', value=\'*\') Token(type=\'NUM\', value=\'6\')
注意子串匹配陷阱
tokens在正则表达式(即"|".join([NAME, EQ, NUM, PLUS, TIMES, WS])
)中顺序也非常重要。因为在进行匹配时,re模块就会按照指定的顺序对模式做匹配。故若碰巧某个模式是另一个较长模式的子串时,必须保证较长的模式在前面优先匹配。如下面分别展示正确的和错误的匹配方法:
LT = r\'(?P<LT><)\' LE = r\'(?P<LE><=)\' EQ = r\'(?P<EQ>>=)\' master_pat = re.compile(\"|\".join([LE, LT, EQ])) # 正确的顺序 master_pat = re.compile(\"|\".join([LT, LE, EQ])) # 错误的顺序
第二种顺序的错误之处在于,这样会把'<='文本匹配为LT('<')紧跟着EQ('='),而没有匹配为单独的LE(<=)。
我们对于“有可能”形成子串的模式也要小心,比如下面这样:
PRINT = r\'(?P<PRINT>print)\' NAME = r\'(?P<NAME>[a-zA-Z_][a-zA-Z_0-9]*)\' master_pat = re.compile(\"|\".join([PRINT, NAME])) # 正确的顺序 for tok in generate_tokens(master_pat, \"printer\"): print(tok)
可以看到被print实际上成了另一个模式的子串,导致另一个模式的匹配出现了问题:
# Token(type=\'PRINT\', value=\'print\') # Token(type=\'NAME\', value=\'er\')
更高级的语法分词,建议采用像PyParsing或PLY这样的包。特别地,对于英文自然语言文章的分词,一般被集成到各类NLP的包中(一般分为按空格拆分、处理前后缀、去掉停用词三步骤)。对于中文自然语言处理分词也有丰富的工具(比如jieba分词工具包)。
引用
- [1] Martelli A, Ravenscroft A, Ascher D. Python cookbook[M]. " O'Reilly Media, Inc.", 2015.
暂无评论内容