目录
如何利用pandas读取csv数据并绘图
导包,常用的numpy和pandas,绘图模块matplotlib,
import matplotlib.pyplot as plt import pandas as pd import numpy as np fig = plt.figure() ax = fig.add_subplot(111)
读取csv文件的数据,保存到numpy数组内
path_csv = \"E:\\\\python\\\\python\\\\2021\\\\202104\\\\04091\\\\path_data.csv\" xa = np.array([42.0, 44.4, 43.1, 40.6]) ya = np.array([21.6, 21.2, 13.5, 14.0]) xa1 = np.array([10, 40]) ya1 = np.array([10, 40]) path_data_x = pd.read_csv(path_csv, header=None, usecols=[0]) path_data_y = pd.read_csv(path_csv, header=None, usecols=[1]) path_x = np.array(path_data_x)[:, 0] path_y = np.array(path_data_y)[:, 0]
绘制图像
print(path_x[0]) print(path_y[0]) ax.plot(xa1, ya1, color=\'g\', linestyle=\'\', marker=\'.\') ax.plot(xa, ya, color=\'g\', linestyle=\'-\', marker=\'.\') ax.plot(path_x, path_y, color=\'m\', linestyle=\'\', marker=\'.\') plt.show()
展示结果
pandas画pearson相关系数热力图
pearson相关系数计算函数
data.corr()
该方法支持空值:np.nan
import seaborn as sns import numpy as np import matplotlib.pyplot as plt data = pd.DataFrame({\"A\":[np.nan,2,9], \"B\":[4,14,6], \"c\":[987,8,9]}) f, ax= plt.subplots(figsize = (14, 10)) corr = data.corr() # print(corr) sns.heatmap(corr,cmap=\'RdBu\', linewidths = 0.05, ax = ax) # 设置Axes的标题 ax.set_title(\'Correlation between features\') plt.show() plt.close() f.savefig(\'sns_style_origin.jpg\', dpi=100, bbox_inches=\'tight\')
其中heatmap()方法中有annot参数,默认为False,不显示每个颜色的数字,如果设置为:annot=True, 则在每个热力图上显示数字。
效果如下:
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。
© 版权声明
THE END
暂无评论内容