python使用pandas实现筛选功能方式

目录

1 筛选出数据的指定几行数据

data=df.loc[2:5] 
#这里的[2:5]表示第3行到第5行内容,[]第一个起始是0,表示数据的第一行

2 筛选出数据某列为某值的所有数据记录

data = df[(df[\'列名1\']== ‘列值1\')]
# 多条件匹配时
data_many=df[(df[\'列名1\']== ‘列值1\')&(df[\'列名2\']==‘列值2\')]
# 多值匹配时
data_many=df[df[\'列名1\'] in [‘值1\',‘值2\',......]]

3 模式匹配

# 开头包含某值的模式匹配
cond=df[\'列名\'].str.startswith(\'值\')
$ 中间包含某值的模式匹配
cond=df[\'列名\'].str.contains(\'值\')

4 范围区间值筛选

# 筛选出基于两个值之间的数据:
cond=df[(df[\'列名1\']>‘列值1\')&(df[\'列名1\']<‘列值2\')] 

5 获取某一行某一列的某个值

print(ridership_df.loc[\'05-05-11\',\'R003\'])
# 或者
print(ridership_df.iloc[4,0])
 
# 结果:
1608

6 获取原始的numpy二维数组

print(df.values)

7 根据条件得到某行元素所在的位置

import pandas as pd
 
df = pd.DataFrame({\'BoolCol\': [1, 2, 3, 3, 4],\'attr\': [22, 33, 22, 44, 66]},index=[10,20,30,40,50])
print(df)
a = df[(df.BoolCol==3)&(df.attr==22)].index.tolist()
b = df[(df.BoolCol==3)&(df.attr==22)].index[0]
c = df[(df.BoolCol==3)&(df.attr==22)].index.values
print(a)

8 元素位置筛选

print(date_frame)                # 打印完整显示的效果
print(date_frame.shape)            # 获取df的行数、列数元祖
print(date_frame.head(2))        # 前2行
print(date_frame.tail(2))        # 后2行
 
print(date_frame.index.tolist())        # 只获取df的索引列表
print(date_frame.columns.tolist())        # 只获取df的列名列表
print(date_frame.values.tolist())        # 只获取df的所有值的列表(二维列表)

9. 删除多行/多列

# 使用的前提是,dataframe的index和columns用的是数字,利用了drop()和range()函数。
 
DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors=\'raise\')
 
# axis = 0,表示删除行; axis = 1 表示删除列。
 
# 想删除多行/列,用range即可,比如要删除前3行,drop(range(0,3),axis = 0(默认为零,可不写))即可。

10 to_datetime将字符串格式转化为日期格式

import datetime
import pandas as pd
 
dictDate = {\'date\': [\'2019-11-01 19:30\', \'2019-11-30 19:00\']}
df = pd.DataFrame(dictDate)
df[\'datetime\'] = pd.to_datetime(df[\'date\'])
df[\'today\'] = df[\'datetime\'].apply(lambda x: x.strftime(\'%Y%m%d\'))
df[\'tomorrow\'] = (df[\'datetime\'] + datetime.timedelta(days=1)).dt.strftime(\'%Y%m%d\')

11 apply() 函数

# pandas 的 apply() 函数可以作用于 Series 或者整个 DataFrame,功能也是自动遍历整个 Series 或者 DataFrame, 对每一个元素运行指定的函数。
def add_extra(nationality, extra):
    if nationality != \"汉\":
        return extra
    else:
        return 0
 
df[\'ExtraScore\'] = df.Nationality.apply(add_extra, args=(5,))
df[\'ExtraScore\'] = df.Nationality.apply(add_extra, extra=5)
df[\'Extra\'] = df.Nationality.apply(lambda n, extra : extra if n == \'汉\' else 0, args=(5,))
 
def add_extra2(nationaltiy, **kwargs):
    return kwargs[nationaltiy]
       
df[\'Extra\'] = df.Nationality.apply(add_extra2, 汉=0, 回=10, 藏=5)

12 map() 函数

import datetime
import pandas as pd
def f(x):
    x = str(x)[:8]
    if x !=\'n\':
        gf = datetime.datetime.strptime(x, \"%Y%m%d\")
        x = gf.strftime(\"%Y-%m-%d\")
    return x
    
def f2(x):
    if str(x) not in [\' \', \'nan\']:
        dd = datetime.datetime.strptime(str(x), \"%Y/%m/%d\")
        x = dd.strftime(\"%Y-%m-%d\")
    return x  
 
def test():
    df = pd.DataFrame()
    df1 = pd.read_csv(\"600694_gf.csv\")
    df2=pd.read_csv(\"600694.csv\")
    df[\'date1\'] =df2[\'DateTime\'].map(f2) 
    df[\'date2\'] =df1[\'date\'].map(f)
    df.to_csv(\'map.csv\')

参考

总结

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容