目录
一、绘制散点图
实现功能:
python绘制散点图,展现两个变量间的关系,当数据包含多组时,使用不同颜色和形状区分。
实现代码:
import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings(action=\'once\') plt.style.use(\'seaborn-whitegrid\') sns.set_style(\"whitegrid\") print(mpl.__version__) print(sns.__version__) def draw_scatter(file): # Import dataset midwest = pd.read_csv(file) # Prepare Data # Create as many colors as there are unique midwest[\'category\'] categories = np.unique(midwest[\'category\']) colors = [plt.cm.Set1(i / float(len(categories) - 1)) for i in range(len(categories))] # Draw Plot for Each Category plt.figure(figsize=(10, 6), dpi=100, facecolor=\'w\', edgecolor=\'k\') for i, category in enumerate(categories): plt.scatter(\'area\', \'poptotal\', data=midwest.loc[midwest.category == category, :],s=20,c=colors[i],label=str(category)) # Decorations plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),) plt.xticks(fontsize=10) plt.yticks(fontsize=10) plt.xlabel(\'Area\', fontdict={\'fontsize\': 10}) plt.ylabel(\'Population\', fontdict={\'fontsize\': 10}) plt.title(\"Scatterplot of Midwest Area vs Population\", fontsize=12) plt.legend(fontsize=10) plt.show() draw_scatter(\"F:\\数据杂坛\\datasets\\midwest_filter.csv\")
实现效果:
二、绘制边界气泡图
实现功能:
气泡图是散点图中的一种类型,可以展现三个数值变量之间的关系,之前的文章介绍过一般的散点图都是反映两个数值型变量的关系,所以如果还想通过散点图添加第三个数值型变量的信息,一般可以使用气泡图。气泡图的实质就是通过第三个数值型变量控制每个散点的大小,点越大,代表的第三维数值越高,反之亦然。而边界气泡图则是在气泡图添加第四个类别型变量的信息,将一些重要的点选出来并连接。
实现代码:
import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings from scipy.spatial import ConvexHull warnings.filterwarnings(action=\'once\') plt.style.use(\'seaborn-whitegrid\') sns.set_style(\"whitegrid\") print(mpl.__version__) print(sns.__version__) def draw_scatter(file): # Step 1: Prepare Data midwest = pd.read_csv(file) # As many colors as there are unique midwest[\'category\'] categories = np.unique(midwest[\'category\']) colors = [plt.cm.Set1(i / float(len(categories) - 1)) for i in range(len(categories))] # Step 2: Draw Scatterplot with unique color for each category fig = plt.figure(figsize=(10, 6), dpi=80, facecolor=\'w\', edgecolor=\'k\') for i, category in enumerate(categories): plt.scatter(\'area\',\'poptotal\',data=midwest.loc[midwest.category == category, :],s=\'dot_size\',c=colors[i],label=str(category),edgecolors=\'black\',linewidths=.5) # Step 3: Encircling # https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot def encircle(x, y, ax=None, **kw): # 定义encircle函数,圈出重点关注的点 if not ax: ax = plt.gca() p = np.c_[x, y] hull = ConvexHull(p) poly = plt.Polygon(p[hull.vertices, :], **kw) ax.add_patch(poly) # Select data to be encircled midwest_encircle_data1 = midwest.loc[midwest.state == \'IN\', :] encircle(midwest_encircle_data1.area,midwest_encircle_data1.poptotal,ec=\"pink\",fc=\"#74C476\",alpha=0.3) encircle(midwest_encircle_data1.area,midwest_encircle_data1.poptotal,ec=\"g\",fc=\"none\",linewidth=1.5) midwest_encircle_data6 = midwest.loc[midwest.state == \'WI\', :] encircle(midwest_encircle_data6.area,midwest_encircle_data6.poptotal,ec=\"pink\",fc=\"black\",alpha=0.3) encircle(midwest_encircle_data6.area,midwest_encircle_data6.poptotal,ec=\"black\",fc=\"none\",linewidth=1.5,linestyle=\'--\') # Step 4: Decorations plt.gca().set(xlim=(0.0, 0.1),ylim=(0, 90000),) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.xlabel(\'Area\', fontdict={\'fontsize\': 14}) plt.ylabel(\'Population\', fontdict={\'fontsize\': 14}) plt.title(\"Bubble Plot with Encircling\", fontsize=14) plt.legend(fontsize=10) plt.show() draw_scatter(\"F:\\数据杂坛\\datasets\\midwest_filter.csv\")
实现效果:
© 版权声明
THE END
暂无评论内容