目录
前言
意义:子域名枚举是为一个或多个域查找子域的过程,它是信息收集阶段的重要组成部分。
实现方法:使用爬虫与字典爆破。
一、爬虫
1.ip138
def search_2(domain): res_list = [] headers = { \'Accept\': \'*/*\', \'Accept-Language\': \'en-US,en;q=0.8\', \'Cache-Control\': \'max-age=0\', \'User-Agent\': \'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36\', \'Connection\': \'keep-alive\', \'Referer\': \'http://www.baidu.com/\' } results = requests.get(\'https://site.ip138.com/\' + domain + \'/domain.htm\', headers=headers) soup = BeautifulSoup(results.content, \'html.parser\') job_bt = soup.findAll(\'p\') try: for i in job_bt: link = i.a.get(\'href\') linkk = link[1:-1] res_list.append(linkk) print(linkk) except: pass print(res_list[:-1]) if __name__ == \'__main__\': search_2(\"jd.com\")
返回结果:
2.bing
def search_1(site): Subdomain = [] headers = { \'Accept\': \'*/*\', \'Accept-Language\': \'en-US,en;q=0.8\', \'Cache-Control\': \'max-age=0\', \'User-Agent\': \'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36\', \'Connection\': \'keep-alive\', \'Referer\': \'http://www.baidu.com/\' } for i in range(1, 16): url = \"https://cn.bing.com/search?q=site%3A\" + site + \"&go=Search&qs=ds&first=\" + str( (int(i) - 1) * 10) + \"&FORM=PERE\" # conn = requests.session() # conn.get(\'http://cn.bing.com\', headers=headers) # html = conn.get(url, stream=True, headers=headers) html = requests.get(url, stream=True, headers=headers) soup = BeautifulSoup(html.content, \'html.parser\') # print(soup) job_bt = soup.findAll(\'h2\') for i in job_bt: link = i.a.get(\'href\') print(link) if link in Subdomain: pass else: Subdomain.append(link) print(Subdomain) if __name__ == \'__main__\': search_1(\"jd.com\")
返回结果:
二、通过字典进行子域名爆破
def dict(url): for dict in open(\'dic.txt\'): # 这里用到子域名字典文件dic.txt dict = dict.replace(\'\\n\', \"\") zym_url = dict + \".\" + url try: ip = socket.gethostbyname(zym_url) print(zym_url + \"-->\" + ip) time.sleep(0.1) except Exception as e: # print(zym_url + \"-->\" + ip + \"--error\") time.sleep(0.1) if __name__ == \'__main__\': dict(\"jd.com\")
返回结果:
三、python爬虫操作步骤
1.写出请求头headers与目标网站url
headers = { \'User-Agent\': \"Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.10240\" } url = \"https://site.ip138.com/\"
2.生成请求
get:res = requests.get(url + domain, headers=headers) post:res = requests.post(url + domain, headers=headers, data=data)
3.抓取数据
soup = BeautifulSoup(res.content, \'html.parser\') # 以html解析器解析res的内容
此时print(soup),返回结果:
4.分析源码,截取标签中内容
1.通过分析源码,确定需要提取p标签中的内容:
job_bt = soup.findAll(\'p\')
此时print(job_bt),返回结果:
2.继续提取a标签内属性为href的值:
try: for i in job_bt: link = i.a.get(\'href\') linkk = link[1:-1] res_list.append(linkk) print(linkk) except: pass
得结果:
3.再进行截取:
res_list[:-1]
得结果:
四、爬虫一些总结
1.抓取数据,生成soup
soup = BeautifulSoup(res.content, \'html.parser\') # 以html解析器解析res的内容
2.从文档中获取所有文字内容
print(soup.get_text())
3.从文档中找到所有< a >标签的链接
for link in soup.find_all(\'a\'): print(link.get(\'href\'))
© 版权声明
THE END
暂无评论内容