一、概述
步骤
- 创建logger对象
- 创建handler对象
- 创建formatter对象
- 把formatter绑定到handler对象上
- 把handler对象绑定到logger对象上
- 设置级别
- 测试
二、低配logging
日志总共分为以下五个级别,这个五个级别自下而上进行匹配 debug–>info–>warning–>error–>critical,默认最低级别为warning级别。
critical=50、error =40 、arning =30、info = 20、debug =10
v1:屏幕输出
v1版本无法指定日志的级别;无法指定日志的格式;只能往屏幕打印,无法写入文件。
import logging logging.debug(\'调试信息\') logging.info(\'正常信息\') logging.warning(\'警告信息\') # WARNING:root:警告信息 logging.error(\'报错信息\') # ERROR:root:报错信息 logging.critical(\'严重错误信息\') # CRITICAL:root:严重错误信息
v2:输出到文件
v2版本不能指定字符编码;只能往文件中打印。
可在logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有:
- filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
- filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
- format:指定handler使用的日志显示格式。
- datefmt:指定日期时间格式。
- level:设置rootlogger(后边会讲解具体概念)的日志级别
- stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。
import logging # 日志的基本配置 logging.basicConfig(filename=\'access.log\', format=\'%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s\', datefmt=\'%Y-%m-%d %H:%M:%S %p\', level=10) logging.debug(\'调试信息\') # 2019-11-28 18:25:26 PM - root - DEBUG -run: 调试信息 logging.info(\'正常信息\') # 2019-11-28 18:25:26 PM - root - INFO -run: 正常信息 logging.warning(\'警告信息\') # 2019-11-28 18:25:26 PM - root - WARNING -run: 警告信息 logging.error(\'报错信息\') # 2019-11-28 18:25:26 PM - root - ERROR -run: 报错信息 logging.critical(\'严重错误信息\') # 2019-11-28 18:25:26 PM - root - CRITICAL -run: 严重错误信息
format参数中可能用到的格式化串:
- %(name)s :Logger的名字
- %(levelno)s :数字形式的日志级别
- %(levelname)s :文本形式的日志级别
- %(pathname)s 调:用日志输出函数的模块的完整路径名,可能没有
- %(filename)s :调用日志输出函数的模块的文件名
- %(module)s :调用日志输出函数的模块名
- %(funcName)s :调用日志输出函数的函数名
- %(lineno)d :调用日志输出函数的语句所在的代码行
- %(created)f :当前时间,用UNIX标准的表示时间的浮 点数表示
- %(relativeCreated)d :输出日志信息时的,自Logger创建以 来的毫秒数
- %(asctime)s :字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
- %(thread)d :线程ID。可能没有
- %(threadName)s :线程名。可能没有
- %(process)d :进程ID。可能没有
- %(message)s:用户输出的消息
v3:使用内置各种对象
logging模块包含四种角色:logger、Filter、Formatter、Handler对象
- logger:产生日志的对象
- Filter:过滤日志的对象
- Formatter:可以定制不同的日志格式对象,然后绑定给不同的Handler对象使用,以此来控制不同的Handler的日志格式
- Handler:接收日志然后控制打印到不同的地方,FileHandler用来打印到文件中,StreamHandler用来打印到终端
import logging # 1、logger对象:负责产生日志,然后交给Filter过滤,然后交给不同的Handler输出 logger = logging.getLogger(__file__) # 2、Filter对象:不常用,略 # 3、Handler对象:接收logger传来的日志,然后控制输出 h1 = logging.FileHandler(\'t1.log\') # 打印到文件 h2 = logging.FileHandler(\'t2.log\') # 打印到文件 sm = logging.StreamHandler() # 打印到终端 # 4、Formatter对象:日志格式 formmater1 = logging.Formatter(\'%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s\', datefmt=\'%Y-%m-%d %H:%M:%S %p\', ) formmater2 = logging.Formatter(\'%(asctime)s : %(message)s\', datefmt=\'%Y-%m-%d %H:%M:%S %p\', ) formmater3 = logging.Formatter(\'%(name)s %(message)s\', ) # 5、为Handler对象绑定格式 h1.setFormatter(formmater1) h2.setFormatter(formmater2) sm.setFormatter(formmater3) # 6、将Handler添加给logger并设置日志级别 logger.addHandler(h1) logger.addHandler(h2) logger.addHandler(sm) # 设置日志级别,可以在两个关卡进行设置logger与handler # logger是第一级过滤,然后才能到handler logger.setLevel(30) h1.setLevel(10) h2.setLevel(10) sm.setLevel(10) # 7、测试 logger.debug(\'debug\') logger.info(\'info\') logger.warning(\'warning\') logger.error(\'error\') logger.critical(\'critical\')
三、高配logging
1、 配置日志文件
以上三个版本的日志只是为了引出我们下面的日志配置文件
import os import logging.config # 定义三种日志输出格式 开始 standard_format = \'[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]\' \\ \'[%(levelname)s][%(message)s]\' # 其中name为getLogger()指定的名字;lineno为调用日志输出函数的语句所在的代码行 simple_format = \'[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s\' id_simple_format = \'[%(levelname)s][%(asctime)s] %(message)s\' # 定义日志输出格式 结束 logfile_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # log文件的目录,需要自定义文件路径 # atm logfile_dir = os.path.join(logfile_dir, \'log\') # C:\\Users\\oldboy\\Desktop\\atm\\log logfile_name = \'log.log\' # log文件名,需要自定义路径名 # 如果不存在定义的日志目录就创建一个 if not os.path.isdir(logfile_dir): # C:\\Users\\oldboy\\Desktop\\atm\\log os.mkdir(logfile_dir) # log文件的全路径 logfile_path = os.path.join(logfile_dir, logfile_name) # C:\\Users\\oldboy\\Desktop\\atm\\log\\log.log # 定义日志路径 结束 # log配置字典 LOGGING_DIC = { \'version\': 1, \'disable_existing_loggers\': False, \'formatters\': { \'standard\': { \'format\': standard_format }, \'simple\': { \'format\': simple_format }, }, \'filters\': {}, # filter可以不定义 \'handlers\': { # 打印到终端的日志 \'console\': { \'level\': \'DEBUG\', \'class\': \'logging.StreamHandler\', # 打印到屏幕 \'formatter\': \'simple\' }, # 打印到文件的日志,收集info及以上的日志 \'default\': { \'level\': \'INFO\', \'class\': \'logging.handlers.RotatingFileHandler\', # 保存到文件 \'formatter\': \'standard\', \'filename\': logfile_path, # 日志文件 \'maxBytes\': 1024 * 1024 * 5, # 日志大小 5M (*****) \'backupCount\': 5, \'encoding\': \'utf-8\', # 日志文件的编码,再也不用担心中文log乱码了 }, }, \'loggers\': { # logging.getLogger(__name__)拿到的logger配置。如果\'\'设置为固定值logger1,则下次导入必须设置成logging.getLogger(\'logger1\') \'\': { # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕 \'handlers\': [\'default\', \'console\'], \'level\': \'DEBUG\', \'propagate\': False, # 向上(更高level的logger)传递 }, }, } def load_my_logging_cfg(): logging.config.dictConfig(LOGGING_DIC) # 导入上面定义的logging配置 logger = logging.getLogger(__name__) # 生成一个log实例 logger.info(\'It works!\') # 记录该文件的运行状态 return logger if __name__ == \'__main__\': load_my_logging_cfg()
2、 使用日志
import time import logging import my_logging # 导入自定义的logging配置 logger = logging.getLogger(__name__) # 生成logger实例 def demo(): logger.debug(\"start range... time:{}\".format(time.time())) logger.info(\"中文测试开始。。。\") for i in range(10): logger.debug(\"i:{}\".format(i)) time.sleep(0.2) else: logger.debug(\"over range... time:{}\".format(time.time())) logger.info(\"中文测试结束。。。\") if __name__ == \"__main__\": my_logging.load_my_logging_cfg() # 在你程序文件的入口加载自定义logging配置 demo()
四、Django日志配置文件
Django(发音:[`dʒæŋɡəʊ])是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,视图V和模版T。
# logging_config.py LOGGING = { \'version\': 1, \'disable_existing_loggers\': False, \'formatters\': { \'standard\': { \'format\': \'[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]\' \'[%(levelname)s][%(message)s]\' }, \'simple\': { \'format\': \'[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s\' }, \'collect\': { \'format\': \'%(message)s\' } }, \'filters\': { \'require_debug_true\': { \'()\': \'django.utils.log.RequireDebugTrue\', }, }, \'handlers\': { # 打印到终端的日志 \'console\': { \'level\': \'DEBUG\', \'filters\': [\'require_debug_true\'], \'class\': \'logging.StreamHandler\', \'formatter\': \'simple\' }, # 打印到文件的日志,收集info及以上的日志 \'default\': { \'level\': \'INFO\', \'class\': \'logging.handlers.RotatingFileHandler\', # 保存到文件,自动切 \'filename\': os.path.join(BASE_LOG_DIR, \"xxx_info.log\"), # 日志文件 \'maxBytes\': 1024 * 1024 * 5, # 日志大小 5M \'backupCount\': 3, \'formatter\': \'standard\', \'encoding\': \'utf-8\', }, # 打印到文件的日志:收集错误及以上的日志 \'error\': { \'level\': \'ERROR\', \'class\': \'logging.handlers.RotatingFileHandler\', # 保存到文件,自动切 \'filename\': os.path.join(BASE_LOG_DIR, \"xxx_err.log\"), # 日志文件 \'maxBytes\': 1024 * 1024 * 5, # 日志大小 5M \'backupCount\': 5, \'formatter\': \'standard\', \'encoding\': \'utf-8\', }, # 打印到文件的日志 \'collect\': { \'level\': \'INFO\', \'class\': \'logging.handlers.RotatingFileHandler\', # 保存到文件,自动切 \'filename\': os.path.join(BASE_LOG_DIR, \"xxx_collect.log\"), \'maxBytes\': 1024 * 1024 * 5, # 日志大小 5M \'backupCount\': 5, \'formatter\': \'collect\', \'encoding\': \"utf-8\" } }, \'loggers\': { # logging.getLogger(__name__)拿到的logger配置 \'\': { \'handlers\': [\'default\', \'console\', \'error\'], \'level\': \'DEBUG\', \'propagate\': True, }, # logging.getLogger(\'collect\')拿到的logger配置 \'collect\': { \'handlers\': [\'console\', \'collect\'], \'level\': \'INFO\', } }, } # ----------- # 用法:拿到俩个logger logger = logging.getLogger(__name__) # 线上正常的日志 collect_logger = logging.getLogger(\"collect\") # 领导说,需要为领导们单独定制领导们看的日志
到此这篇关于Python日志模块的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持。
© 版权声明
THE END
暂无评论内容