pandas dataframe drop函数介绍

使用drop函数删除dataframe的某列或某行数据:

drop(labels, axis=0, level=None, inplace=False, errors=\'raise\')
         --  axis为0时表示删除行,axis为1时表示删除列

常用参数如下: 

pandas dataframe drop函数介绍

import pandas as pd
import numpy as np
 
data = {\'Country\':[\'China\',\'US\',\'Japan\',\'EU\',\'UK/Australia\', \'UK/Netherland\'],
\'Number\':[100, 150, 120, 90, 30, 2],
\'Value\': [1, 2, 3, 4, 5, 6],
\'label\': list(\'abcdef\')}
 
df = pd.DataFrame(data)
print(\"df原数据:\\n\", df, \'\\n\')
out:
df原数据:
          Country  Number  Value label
0          China     100      1     a
1             US     150      2     b
2          Japan     120      3     c
3             EU      90      4     d
4   UK/Australia      30      5     e
5  UK/Netherland       2      6     f

删除单列:

print(df.drop(\'Country\', axis = 1))
 
out:
   Number  Value label
0     100      1     a
1     150      2     b
2     120      3     c
3      90      4     d
4      30      5     e
5       2      6     f

删除多列:

print(df.drop([\'Country\',\'Number\'], axis = 1))
 
out:
   Value label
0      1     a
1      2     b
2      3     c
3      4     d
4      5     e
5      6     f

删除单行:

print(df.drop(labels = 1, axis = 0))
 
out:
         Country  Number  Value label
0          China     100      1     a
2          Japan     120      3     c
3             EU      90      4     d
4   UK/Australia      30      5     e
5  UK/Netherland       2      6     f

删除多行:

print(df.drop(labels = [1,2], axis = 0))
 
out:
         Country  Number  Value label
0          China     100      1     a
3             EU      90      4     d
4   UK/Australia      30      5     e
5  UK/Netherland       2      6     f

使用range函数删除连续多行:

print(df.drop(labels = range(1,3), axis = 0))
 
out:
         Country  Number  Value label
0          China     100      1     a
3             EU      90      4     d
4   UK/Australia      30      5     e
5  UK/Netherland       2      6     f
© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容