使用drop函数删除dataframe的某列或某行数据:
drop(labels, axis=0, level=None, inplace=False, errors=\'raise\') -- axis为0时表示删除行,axis为1时表示删除列
常用参数如下:
import pandas as pd import numpy as np data = {\'Country\':[\'China\',\'US\',\'Japan\',\'EU\',\'UK/Australia\', \'UK/Netherland\'], \'Number\':[100, 150, 120, 90, 30, 2], \'Value\': [1, 2, 3, 4, 5, 6], \'label\': list(\'abcdef\')} df = pd.DataFrame(data) print(\"df原数据:\\n\", df, \'\\n\') out: df原数据: Country Number Value label 0 China 100 1 a 1 US 150 2 b 2 Japan 120 3 c 3 EU 90 4 d 4 UK/Australia 30 5 e 5 UK/Netherland 2 6 f
删除单列:
print(df.drop(\'Country\', axis = 1)) out: Number Value label 0 100 1 a 1 150 2 b 2 120 3 c 3 90 4 d 4 30 5 e 5 2 6 f
删除多列:
print(df.drop([\'Country\',\'Number\'], axis = 1)) out: Value label 0 1 a 1 2 b 2 3 c 3 4 d 4 5 e 5 6 f
删除单行:
print(df.drop(labels = 1, axis = 0)) out: Country Number Value label 0 China 100 1 a 2 Japan 120 3 c 3 EU 90 4 d 4 UK/Australia 30 5 e 5 UK/Netherland 2 6 f
删除多行:
print(df.drop(labels = [1,2], axis = 0)) out: Country Number Value label 0 China 100 1 a 3 EU 90 4 d 4 UK/Australia 30 5 e 5 UK/Netherland 2 6 f
使用range函数删除连续多行:
print(df.drop(labels = range(1,3), axis = 0)) out: Country Number Value label 0 China 100 1 a 3 EU 90 4 d 4 UK/Australia 30 5 e 5 UK/Netherland 2 6 f
© 版权声明
THE END
暂无评论内容