官方github: https://github.com/RainCloudPlots/RainCloudPlots
Raincloud 的 Python 实现是一个名为 PtitPrince 的包,它写在 seaborn 之上,这是一个 Python 绘图库,用于从 pandas 数据帧中获取漂亮的绘图。
import pandas as pd import seaborn as sns import os import matplotlib.pyplot as plt #sns.set(style=\"darkgrid\") #sns.set(style=\"whitegrid\") #sns.set_style(\"white\") sns.set(style=\"whitegrid\",font_scale=2) import matplotlib.collections as clt import ptitprince as pt
#图片保存及输出设置 savefigs = True figs_dir = \'../figs/tutorial_python\' if savefigs: # Make the figures folder if it doesn\'t yet exist #如果没有找到文件夹,先创建此文件夹 if not os.path.isdir(\'../figs/tutorial_python\'): os.makedirs(\'../figs/tutorial_python\') def export_fig(axis,text, fname): if savefigs: axis.text() axis.savefig(fname, bbox_inches=\'tight\')
df = pd.read_csv (\"simdat.csv\", sep= \",\") df.head()
该图可以让读者初步了解数据集:哪个组的平均值更大,这种差异是否可能显着。 此图中仅显示每组分数的平均值和标准差。
f, ax = plt.subplots(figsize=(7, 7)) sns.barplot(x = \"group\", y = \"score\", data = df, capsize= .1) plt.title(\"Figure P1\\n Bar Plot\") if savefigs: plt.savefig(\'.\\\\figs\\\\tutorial_python\\\\figureP01.png\', bbox_inches=\'tight\')
为了了解我们的数据集的分布,我们可以绘制一个“云”,即直方图的平滑版本:
# plotting the clouds f, ax = plt.subplots(figsize=(7, 5)) dy=\"group\" dx=\"score\" ort=\"h\" pal = sns.color_palette(n_colors=1) ax=pt.half_violinplot(x=dx, y=dy, data=df, palette=pal, bw=.2, cut=0., scale=\"area\", width=.6, inner=None, orient=ort) plt.title(\"Figure P2\\n Basic Rainclouds\") if savefigs: plt.savefig(\'.\\\\figs\\\\tutorial_python\\\\figureP02.png\', bbox_inches=\'tight\')
为了更精确地了解分布并说明数据中的潜在异常值或其他模式,我们现在添加“雨”,即数据点的简单单维表示:
# adding the rain f, ax=plt.subplots(figsize=(7, 5)) ax=pt.half_violinplot(x=dx, y=dy, data=df, palette=pal, bw=.2, cut=0., scale=\"area\", width=.6, inner=None, orient=ort) ax=sns.stripplot(x=dx, y=dy, data=df, palette=pal, edgecolor=\"white\", size=3, jitter=0, zorder=0, orient=ort) plt.title(\"Figure P3\\n Raincloud Without Jitter\") if savefigs: plt.savefig(\'.\\\\figs\\\\tutorial_python\\\\figureP03.png\', bbox_inches=\'tight\')
# adding jitter to the rain f, ax =plt.subplots(figsize=(7, 5)) ax=pt.half_violinplot(x=dx, y=dy, data=df, palette=pal, bw=.2, cut=0., scale=\"area\", width=.6, inner=None, orient=ort) ax=sns.stripplot(x=dx, y=dy, data=df, palette=pal, edgecolor=\"white\", size=3, jitter=1, zorder=0, orient=ort) plt.title(\"Figure P4\\n Raincloud with Jittered Data\") if savefigs: plt.savefig(\'.\\\\figs\\\\tutorial_python\\\\figureP04.png\', bbox_inches=\'tight\')
这样可以很好地了解数据点的分布情况,但中位数和四分位数并不明显,很难一目了然地确定统计差异。 因此,我们添加了一个“空”箱线图来显示中位数、四分位数和异常值:
#adding the boxplot with quartiles f, ax=plt.subplots(figsize=(7, 5)) ax=pt.half_violinplot(x=dx, y=dy, data=df, palette=pal, bw=.2, cut=0., scale=\"area\", width=.6, inner=None, orient=ort) ax=sns.stripplot(x=dx, y=dy, data=df, palette=pal, edgecolor=\"white\", size=3, jitter=1, zorder=0, orient=ort) ax=sns.boxplot(x=dx, y=dy, data=df, color=\"black\", width=.15, zorder=10, showcaps=True, boxprops={\'facecolor\':\'none\',\"zorder\":10}, showfliers=True, whiskerprops{\'linewidth\':2,\"zorder\":10}, saturation=1, orient=ort) plt.title(\"Figure P5\\n Raincloud with Boxplot\") if savefigs: plt.savefig(\'../figs/tutorial_python/figureP05.png\', bbox_inches=\'tight\')
现在我们可以设置一个调色板来表征两组:
#adding color pal=\"Set2\" f, ax=plt.subplots(figsize=(7, 5)) ax=pt.half_violinplot(x=dx, y=dy, data=df, palette=pal, bw=.2, cut=0., scale=\"area\", width=.6, inner=None, orient=ort) ax=sns.stripplot(x=dx, y=dy, data=df, palette=pal, edgecolor=\"white\", size=3, jitter=1, zorder=0, orient=ort) ax=sns.boxplot(x=dx, y=dy, data=df, color=\"black\", width=.15, zorder=10, showcaps=True, boxprops={\'facecolor\':\'none\',\"zorder\":10}, showfliers=True, whiskerprops={\'linewidth\':2,\"zorder\":10}, saturation=1, orient=ort) plt.title(\"Figure P6\\n Tweaking the Colour of Your Raincloud\")
我们可以使用函数 pt.Raincloud 来添加一些自动化:
#same thing with a single command: now x **must** be the categorical value dx=\"group\"; dy=\"score\"; ort=\"h\"; pal=\"Set2\"; sigma=.2 f, ax=plt.subplots(figsize=(7, 5)) pt.RainCloud(x=dx, y=dy, data=df, palette=pal, bw=sigma, width_viol = .6, ax = ax, orient = ort) plt.title(\"Figure P7\\n Using the pt.Raincloud function\") if savefigs: plt.savefig(\'../figs/tutorial_python/figureP07.png\', bbox_inches=\'tight\')
‘move’ 参数可用于移动箱线图下方的雨量,在某些情况下提供更好的原始数据可见性:
#moving the rain below the boxplot dx=\"group\"; dy=\"score\"; ort=\"h\"; pal=\"Set2\"; sigma=.2 f,ax=plt.subplots(figsize=(7, 5)) ax=pt.RainCloud(x=dx, y=dy, data=df, palette=pal, bw=sigma, width_viol=.6, ax=ax, orient=ort, move=.2) plt.title(\"Figure P8\\n Rainclouds with Shifted Rain\")
此外,raincloud 函数同样适用于列表或 np.array,如果您更喜欢使用它们而不是数据框输入:
# Usage with a list/np.array input dx=list(df[\"group\"]); dy=list(df[\"score\"]) f, ax=plt.subplots(figsize=(7, 5)) ax=pt.RainCloud(x=dx, y=dy, palette=pal, bw=sigma, width_viol=.6, ax=ax, orient=ort) plt.title(\"Figure P9\\n Rainclouds with List/Array Inputs\")
对于某些数据,您可能希望将雨云的方向翻转为“petit prince”图。 您可以使用 pt.RainCloud 函数中的 ‘orient’ 标志来执行此操作:
# Changing orientation dx=\"group\"; dy=\"score\"; ort=\"v\"; pal=\"Set2\"; sigma=.2 f, ax=plt.subplots(figsize=(7, 5)) ax=pt.RainCloud(x=dx, y=dy, data=df, palette=pal, bw=sigma, width_viol=.5, ax=ax, orient=ort) plt.title(\"Figure P10\\n Flipping your Rainclouds\")
还可以更改用于生成数据概率分布函数的平滑核。 为此,您调整 sigma 参数:
#changing cloud smoothness dx=\"group\"; dy=\"score\"; ort=\"h\"; pal=\"Set2\"; sigma=.05 f, ax=plt.subplots(figsize=(7, 5)) ax=pt.RainCloud(x=dx, y=dy, data=df, palette=pal, bw=sigma, width_viol=.6, ax=ax, orient=ort) plt.title(\"Figure P11\\n Customizing Raincloud Smoothness\")
最后,使用 pointplot 标志,您可以添加一条连接组平均值的线。 这对于更复杂的数据集很有用,例如重复测量或因子数据。 下面我们通过改变各个图的色调、不透明度或闪避元素来说明使用雨云绘制此类数据的几种不同方法:
#adding a red line connecting the groups\' mean value (useful for longitudinal data) dx=\"group\"; dy=\"score\"; ort=\"h\"; pal=\"Set2\"; sigma=.2 f, ax=plt.subplots(figsize=(7, 5)) ax=pt.RainCloud(x=dx, y=dy, data=df, palette=pal, bw=sigma, width_viol=.6, ax=ax, orient=ort, pointplot=True) plt.title(\"Figure P12\\n Adding Lineplots to Emphasize Factorial Effects\")
另一个灵活的选择是使用 Facet Grids 来分隔不同的组或因子水平,
如下所示:
# Rainclouds with FacetGrid g=sns.FacetGrid(df, col=\"gr2\", height=6) g=g.map_dataframe(pt.RainCloud, x=\"group\", y=\"score\", data=df, orient=\"h\") g.fig.subplots_adjust(top=0.75) g.fig.suptitle(\"Figure P13\\n Using FacetGrid for More Complex Designs\", fontsize=26)
作为一种替代方法,可以使用色调输入将不同的子组直接绘制在彼此之上,从而促进它们的比较:
# Hue Input for Subgroups dx=\"group\"; dy=\"score\"; dhue=\"gr2\"; ort=\"h\"; pal=\"Set2\"; sigma=.2 f, ax=plt.subplots(figsize=(12, 5)) ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df, palette=pal, bw=sigma, width_viol=.7, ax=ax, orient=ort) plt.title(\"Figure P14\\n Rainclouds with Subgroups\")
为了提高该图的可读性,我们使用相关标志(0-1 alpha 强度)调整 alpha 级别:
# Setting alpha level f, ax=plt.subplots(figsize=(12, 5)) ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df, palette=pal, bw=sigma, width_viol=.7, ax=ax, orient=ort , alpha=.65) plt.title(\"Figure P15\\n Adjusting Raincloud Alpha Level\")
我们可以将 dodge 标志设置为 true,而不是让两个箱线图相互混淆,从而增加交互性:
#The Doge Flag f, ax=plt.subplots(figsize=(12, 5)) ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df, palette=pal, bw=sigma, width_viol=.7, ax=ax, orient=ort , alpha=.65, dodge=True) plt.title(\"Figure P16\\n The Boxplot Dodge Flag\")
最后,我们可能希望在我们的图表中添加一个传统的线图,以帮助检测因子主效应和交互作用。
例如,我们在每个箱线图中绘制了平均值:
#same, with dodging and line f, ax=plt.subplots(figsize=(12, 5)) ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df, palette=pal, bw=sigma, width_viol=.7, ax=ax, orient=ort , alpha=.65, dodge=True, pointplot=True) plt.title(\"Figure P17\\n Dodged Boxplots with Lineplots\")
这是相同的图,但现在使用“移动”参数再次将单个观测值移动到箱线图下方:
#moving the rain under the boxplot f, ax=plt.subplots(figsize=(12, 5)) ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df, palette=pal, bw=sigma, width_viol=.7, ax=ax, orient=ort , alpha=.65, dodge=True, pointplot=True, move=.2) plt.title(\"Figure P18\\n Shifting the Rain with the Move Parameter\")
作为我们的最后一个示例,我们将考虑具有两组和三个时间点的复杂重复测量设计。 目标是说明我们复杂的相互作用和主要影响,同时保持雨云图的透明性:
# Load in the repeated data df_rep=pd.read_csv(\"repeated_measures_data.csv\", sep=\",\") df_rep.columns=[\"score\", \"timepoint\", \"group\"] df_rep.head()
# Plot the repeated measures data dx=\"group\"; dy=\"score\"; dhue=\"timepoint\"; ort=\"h\"; pal=\"Set2\"; sigma=.2 f, ax=plt.subplots(figsize=(12, 5)) ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df_rep, palette=pal, bw=sigma, width_viol=.7, ax=ax, orient=ort , alpha=.65, dodge=True, pointplot=True, move=.2) plt.title(\"Figure P19\\n Repeated Measures Data - Example 1\")
# Now with the group as hue dx=\"timepoint\"; dy=\"score\"; dhue=\"group\" f, ax=plt.subplots(figsize=(12, 5)) ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df_rep, palette=pal, bw=sigma, width_viol=.7, ax=ax, orient=ort , alpha=.65, dodge=True, pointplot=True, move=.2) plt.title(\"Figure P20\\n Repeated Measures Data - Example 2\")
暂无评论内容