python从PDF中提取数据的示例

2025-11-07 0 490

01

前言

数据是数据科学中任何分析的关键,大多数分析中最常用的数据集类型是存储在逗号分隔值(csv)表中的干净数据。然而,由于可移植文档格式(pdf)文件是最常用的文件格式之一,因此每个数据科学家都应该了解如何从pdf文件中提取数据,并将数据转换为诸如“csv”之类的格式,以便用于分析或构建模型。

在本文中,我们将重点讨论如何从pdf文件中提取数据表。类似的分析可以用于从pdf文件中提取其他类型的数据,如文本或图像。我们将说明如何从pdf文件中提取数据表,然后将其转换为适合于进一步分析和构建模型的格式。我们将给出一个实例。

python从PDF中提取数据的示例

02

示例:使用Python从PDF文件中提取一个表格

a)将表复制到Excel并保存为table_1_raw.csv

数据以一维格式存储,必须进行重塑、清理和转换。

b)导入必要的库

import pandas as pd import numpy as np

c)导入原始数据,重新定义数据

df=pd.read_csv(“table_1_raw.csv”, header=None) df.values.shape df2=pd.DataFrame(df.values.reshape(25,10)) column_names=df2[0:1].values[0] df3=df2[1:] df3.columns = df2[0:1].values[0] df3.head()

python从PDF中提取数据的示例

d)使用字符串处理工具进行数据纠缠

我们从上面的表格中注意到,x5、x6和x7列是用百分比表示的,所以我们需要去掉percent(%)符号:

df4[x5]=list(map(lambda x: x[:1], df4[x5].values)) df4[x6]=list(map(lambda x: x[:1], df4[x6].values)) df4[x7]=list(map(lambda x: x[:1], df4[x7].values))

e)将数据转换为数字形式

我们注意到列x5、x6和x7的列值数据类型为string,因此我们需要将它们转换为数值数据,如下所示:

df4[x5]=[float(x) for x in df4[x5].values] df4[x6]=[float(x) for x in df4[x6].values] df4[x7]=[float(x) for x in df4[x7].values]

f)查看转换数据的最终形式

df4.head(n=5)

python从PDF中提取数据的示例

g)导出最终数据到一个csv文件

df4.to_csv(table_1_final.csv,index=False)

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

遇见资源网 后端开发 python从PDF中提取数据的示例 https://www.ox520.com/5253.html

常见问题

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务