我就废话不多说了,大家还是直接看代码吧!
# encoding=utf-8 import numpy as np import pandas as pd # 长宽格式的转换 # 1 data = pd.read_csv(\'d:data/macrodata.csv\') print \'data:=\\n\', data print \'data.to_records():=\\n\', data.to_records() print \'data.year:=\\n\', data.year print \'data.quarter:=\\n\', data.quarter periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name=\'date\') print \'periods:=\\n\', periods data = pd.DataFrame(data.to_records(), columns=pd.Index([\'realgdp\', \'infl\', \'unemp\'], name=\'item\'), index=periods.to_timestamp(\'D\', \'end\')) print \'data:=\\n\', data ldata = data.stack().reset_index().rename(columns={0: \'value\'}) # print \'ldata:=\\n\', ldata print \'ldata.get(\\\'realgdp\\\'):=\\n\', ldata.get(\'realgdp\') print \'ldata.get(\\\'unemp\\\'):=\\n\', ldata.get(\'unemp\') wdata = ldata.pivot(\'date\', \'item\', \'value\') print \'ldata:=\\n\', ldata print \'wdata:=\\n\', wdata # 2 print \'ldata[:10]:=\\n\', ldata[:10] pivoted = ldata.pivot(\'date\', \'item\', \'value\') print \'pivoted:=\\n\', pivoted print \'pivoted.head():=\\n\', pivoted.head() print \'ldata:=\\n\', ldata ldata[\'value2\'] = np.random.randn(len(ldata)) print \'ldata[\\\'value2\\\']:=\\n\', ldata[\'value2\'] print \'ldata[:10]:=\\n\', ldata[:10] pivoted = ldata.pivot(\'date\', \'item\') print \'pivoted:=\\n\', pivoted print pivoted[:5] print \'pivoted[\\\'value\\\'][:5]:=\\n\', pivoted[\'value\'][:5] print \'ldata:=\\n\', ldata unstacked = ldata.set_index([\'date\', \'item\']).unstack(\'item\') print \'unstacked:=\\n\', unstacked print \'test\'
补充知识:python使用_pandas_用stack和unstack进行行列重塑(key-value变宽表)
数据结构的重塑(reshape)
与数据库交互时常遇到堆叠格式(key-value)和宽表形式(dataframe)的转换,如:
堆叠格式:
宽表形式dataframe:
下面是相互转换的示例代码:
import pandas as pd import numpy as np # 常用的表格形式的数据结构 df = pd.DataFrame(np.arange(6).reshape((2,3)), index=[\'id1\',\'id2\'], columns=[\'attr1\',\'attr2\',\'attr3\']) print(df) out: attr1 attr2 attr3 id1 0 1 2 id2 3 4 5 # 宽表形式(dataframe)转变为堆叠形式(key-value)形式 # 数据库中常以该形式存储 df_key_value = df.stack().reset_index() df_key_value.columns = [\'id\', \'attr\', \'value\'] print(df_key_value) out: id attr value 0 id1 attr1 0 1 id1 attr2 1 2 id1 attr3 2 3 id2 attr1 3 4 id2 attr2 4 5 id2 attr3 5 # 堆叠转换为宽表形式 # 用set_index创建层次化索引,在用unstack重塑 # unstack中作为旋转轴的变量(如attr),其值会作为列变量展开 df_key_value.set_index([\'id\',\'attr\']).unstack(\'attr\') out: value attr attr1 attr2 attr3 id id1 0 1 2 id2 3 4 5 # 多层索引转化为宽表 df_long = df_key_value.set_index([\'id\',\'attr\']).unstack(\'attr\')[\'value\'].reset_index() df_long out: attr id attr1 attr2 attr3 0 id1 0 1 2 1 id2 3 4 5 # 堆叠转换为宽表的快捷键---pivot df_key_value.pivot(\'id\',\'attr\',\'value\') out: attr attr1 attr2 attr3 id id1 0 1 2 id2 3 4 5
以上这篇python 数据分析实现长宽格式的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持自学编程网。