1、读Hive表数据
pyspark读取hive数据非常简单,因为它有专门的接口来读取,完全不需要像hbase那样,需要做很多配置,pyspark提供的操作hive的接口,使得程序可以直接使用SQL语句从hive里面查询需要的数据,代码如下:
from pyspark.sql import HiveContext,SparkSession _SPARK_HOST = \"spark://spark-master:7077\" _APP_NAME = \"test\" spark_session = SparkSession.builder.master(_SPARK_HOST).appName(_APP_NAME).getOrCreate() hive_context= HiveContext(spark_session ) # 生成查询的SQL语句,这个跟hive的查询语句一样,所以也可以加where等条件语句 hive_database = \"database1\" hive_table = \"test\" hive_read = \"select * from {}.{}\".format(hive_database, hive_table) # 通过SQL语句在hive中查询的数据直接是dataframe的形式 read_df = hive_context.sql(hive_read)
2 、将数据写入hive表
pyspark写hive表有两种方式:
(1)通过SQL语句生成表
from pyspark.sql import SparkSession, HiveContext _SPARK_HOST = \"spark://spark-master:7077\" _APP_NAME = \"test\" spark = SparkSession.builder.master(_SPARK_HOST).appName(_APP_NAME).getOrCreate() data = [ (1,\"3\",\"145\"), (1,\"4\",\"146\"), (1,\"5\",\"25\"), (1,\"6\",\"26\"), (2,\"32\",\"32\"), (2,\"8\",\"134\"), (2,\"8\",\"134\"), (2,\"9\",\"137\") ] df = spark.createDataFrame(data, [\'id\', \"test_id\", \'camera_id\']) # method one,default是默认数据库的名字,write_test 是要写到default中数据表的名字 df.registerTempTable(\'test_hive\') sqlContext.sql(\"create table default.write_test select * from test_hive\")
(2)saveastable的方式
# method two # \"overwrite\"是重写表的模式,如果表存在,就覆盖掉原始数据,如果不存在就重新生成一张表 # mode(\"append\")是在原有表的基础上进行添加数据 df.write.format(\"hive\").mode(\"overwrite\").saveAsTable(\'default.write_test\')
tips:
spark用上面几种方式读写hive时,需要在提交任务时加上相应的配置,不然会报错:
spark-submit –conf spark.sql.catalogImplementation=hive test.py
补充知识:PySpark基于SHC框架读取HBase数据并转成DataFrame
一、首先需要将HBase目录lib下的jar包以及SHC的jar包复制到所有节点的Spark目录lib下
二、修改spark-defaults.conf 在spark.driver.extraClassPath和spark.executor.extraClassPath把上述jar包所在路径加进去
三、重启集群
四、代码
#/usr/bin/python #-*- coding:utf-8 ?*- from pyspark import SparkContext from pyspark.sql import SQLContext,HiveContext,SparkSession from pyspark.sql.types import Row,StringType,StructField,StringType,IntegerType from pyspark.sql.dataframe import DataFrame sc = SparkContext(appName=\"pyspark_hbase\") sql_sc = SQLContext(sc) dep = \"org.apache.spark.sql.execution.datasources.hbase\" #定义schema catalog = \"\"\"{ \"table\":{\"namespace\":\"default\", \"name\":\"teacher\"}, \"rowkey\":\"key\", \"columns\":{ \"id\":{\"cf\":\"rowkey\", \"col\":\"key\", \"type\":\"string\"}, \"name\":{\"cf\":\"teacherInfo\", \"col\":\"name\", \"type\":\"string\"}, \"age\":{\"cf\":\"teacherInfo\", \"col\":\"age\", \"type\":\"string\"}, \"gender\":{\"cf\":\"teacherInfo\", \"col\":\"gender\",\"type\":\"string\"}, \"cat\":{\"cf\":\"teacherInfo\", \"col\":\"cat\",\"type\":\"string\"}, \"tag\":{\"cf\":\"teacherInfo\", \"col\":\"tag\", \"type\":\"string\"}, \"level\":{\"cf\":\"teacherInfo\", \"col\":\"level\",\"type\":\"string\"} } }\"\"\" df = sql_sc.read.options(catalog = catalog).format(dep).load() print (\'***************************************************************\') print (\'***************************************************************\') print (\'***************************************************************\') df.show() print (\'***************************************************************\') print (\'***************************************************************\') print (\'***************************************************************\') sc.stop()
五、解释
数据来源参考请本人之前的文章,在此不做赘述
schema定义参考如图:
六、结果
以上这篇在python中使用pyspark读写Hive数据操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持自学编程网。