基本概念
precision:预测为对的当中,原本为对的比例(越大越好,1为理想状态)
recall:原本为对的当中,预测为对的比例(越大越好,1为理想状态)
F-measure:F度量是对准确率和召回率做一个权衡(越大越好,1为理想状态,此时precision为1,recall为1)
accuracy:预测对的(包括原本是对预测为对,原本是错的预测为错两种情形)占整个的比例(越大越好,1为理想状态)
fp rate:原本是错的预测为对的比例(越小越好,0为理想状态)
tp rate:原本是对的预测为对的比例(越大越好,1为理想状态)
ROC曲线通常在Y轴上具有真阳性率,在X轴上具有假阳性率。这意味着图的左上角是“理想”点 – 误报率为零,真正的正率为1。这不太现实,但它确实意味着曲线下面积(AUC)通常更好。
二分类问题:ROC曲线
from __future__ import absolute_import from __future__ import division from __future__ import print_function import time start_time = time.time() import matplotlib.pyplot as plt from sklearn.metrics import roc_curve from sklearn.metrics import auc import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import recall_score,accuracy_score from sklearn.metrics import precision_score,f1_score from keras.optimizers import Adam,SGD,sgd from keras.models import load_model print(\'读取数据\') X_train = np.load(\'x_train-rotate_2.npy\') Y_train = np.load(\'y_train-rotate_2.npy\') print(X_train.shape) print(Y_train.shape) print(\'获取测试数据和验证数据\') X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.1, random_state=666) Y_train = np.asarray(Y_train,np.uint8) Y_valid = np.asarray(Y_valid,np.uint8) X_valid = np.array(X_valid, np.float32) / 255. print(\'获取模型\') model = load_model(\'./model/InceptionV3_model.h5\') opt = Adam(lr=1e-4) model.compile(optimizer=opt, loss=\'binary_crossentropy\') print(\"Predicting\") Y_pred = model.predict(X_valid) Y_pred = [np.argmax(y) for y in Y_pred] # 取出y中元素最大值所对应的索引 Y_valid = [np.argmax(y) for y in Y_valid] # micro:多分类 # weighted:不均衡数量的类来说,计算二分类metrics的平均 # macro:计算二分类metrics的均值,为每个类给出相同权重的分值。 precision = precision_score(Y_valid, Y_pred, average=\'weighted\') recall = recall_score(Y_valid, Y_pred, average=\'weighted\') f1_score = f1_score(Y_valid, Y_pred, average=\'weighted\') accuracy_score = accuracy_score(Y_valid, Y_pred) print(\"Precision_score:\",precision) print(\"Recall_score:\",recall) print(\"F1_score:\",f1_score) print(\"Accuracy_score:\",accuracy_score) # 二分类 ROC曲线 # roc_curve:真正率(True Positive Rate , TPR)或灵敏度(sensitivity) # 横坐标:假正率(False Positive Rate , FPR) fpr, tpr, thresholds_keras = roc_curve(Y_valid, Y_pred) auc = auc(fpr, tpr) print(\"AUC : \", auc) plt.figure() plt.plot([0, 1], [0, 1], \'k--\') plt.plot(fpr, tpr, label=\'Keras (area = {:.3f})\'.format(auc)) plt.xlabel(\'False positive rate\') plt.ylabel(\'True positive rate\') plt.title(\'ROC curve\') plt.legend(loc=\'best\') plt.savefig(\"../images/ROC/ROC_2分类.png\") plt.show() print(\"--- %s seconds ---\" % (time.time() - start_time))
ROC图如下所示:
多分类问题:ROC曲线
ROC曲线通常用于二分类以研究分类器的输出。为了将ROC曲线和ROC区域扩展到多类或多标签分类,有必要对输出进行二值化。⑴可以每个标签绘制一条ROC曲线。⑵也可以通过将标签指示符矩阵的每个元素视为二元预测(微平均)来绘制ROC曲线。⑶另一种用于多类别分类的评估方法是宏观平均,它对每个标签的分类给予相同的权重。
from __future__ import absolute_import from __future__ import division from __future__ import print_function import time start_time = time.time() import matplotlib.pyplot as plt from sklearn.metrics import roc_curve from sklearn.metrics import auc import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import recall_score,accuracy_score from sklearn.metrics import precision_score,f1_score from keras.optimizers import Adam,SGD,sgd from keras.models import load_model from itertools import cycle from scipy import interp from sklearn.preprocessing import label_binarize nb_classes = 5 print(\'读取数据\') X_train = np.load(\'x_train-resized_5.npy\') Y_train = np.load(\'y_train-resized_5.npy\') print(X_train.shape) print(Y_train.shape) print(\'获取测试数据和验证数据\') X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.1, random_state=666) Y_train = np.asarray(Y_train,np.uint8) Y_valid = np.asarray(Y_valid,np.uint8) X_valid = np.asarray(X_valid, np.float32) / 255. print(\'获取模型\') model = load_model(\'./model/SE-InceptionV3_model.h5\') opt = Adam(lr=1e-4) model.compile(optimizer=opt, loss=\'categorical_crossentropy\') print(\"Predicting\") Y_pred = model.predict(X_valid) Y_pred = [np.argmax(y) for y in Y_pred] # 取出y中元素最大值所对应的索引 Y_valid = [np.argmax(y) for y in Y_valid] # Binarize the output Y_valid = label_binarize(Y_valid, classes=[i for i in range(nb_classes)]) Y_pred = label_binarize(Y_pred, classes=[i for i in range(nb_classes)]) # micro:多分类 # weighted:不均衡数量的类来说,计算二分类metrics的平均 # macro:计算二分类metrics的均值,为每个类给出相同权重的分值。 precision = precision_score(Y_valid, Y_pred, average=\'micro\') recall = recall_score(Y_valid, Y_pred, average=\'micro\') f1_score = f1_score(Y_valid, Y_pred, average=\'micro\') accuracy_score = accuracy_score(Y_valid, Y_pred) print(\"Precision_score:\",precision) print(\"Recall_score:\",recall) print(\"F1_score:\",f1_score) print(\"Accuracy_score:\",accuracy_score) # roc_curve:真正率(True Positive Rate , TPR)或灵敏度(sensitivity) # 横坐标:假正率(False Positive Rate , FPR) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(nb_classes): fpr[i], tpr[i], _ = roc_curve(Y_valid[:, i], Y_pred[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr[\"micro\"], tpr[\"micro\"], _ = roc_curve(Y_valid.ravel(), Y_pred.ravel()) roc_auc[\"micro\"] = auc(fpr[\"micro\"], tpr[\"micro\"]) # Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(nb_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(nb_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= nb_classes fpr[\"macro\"] = all_fpr tpr[\"macro\"] = mean_tpr roc_auc[\"macro\"] = auc(fpr[\"macro\"], tpr[\"macro\"]) # Plot all ROC curves lw = 2 plt.figure() plt.plot(fpr[\"micro\"], tpr[\"micro\"], label=\'micro-average ROC curve (area = {0:0.2f})\' \'\'.format(roc_auc[\"micro\"]), color=\'deeppink\', linestyle=\':\', linewidth=4) plt.plot(fpr[\"macro\"], tpr[\"macro\"], label=\'macro-average ROC curve (area = {0:0.2f})\' \'\'.format(roc_auc[\"macro\"]), color=\'navy\', linestyle=\':\', linewidth=4) colors = cycle([\'aqua\', \'darkorange\', \'cornflowerblue\']) for i, color in zip(range(nb_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label=\'ROC curve of class {0} (area = {1:0.2f})\' \'\'.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], \'k--\', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel(\'False Positive Rate\') plt.ylabel(\'True Positive Rate\') plt.title(\'Some extension of Receiver operating characteristic to multi-class\') plt.legend(loc=\"lower right\") plt.savefig(\"../images/ROC/ROC_5分类.png\") plt.show() print(\"--- %s seconds ---\" % (time.time() - start_time))
ROC图如下所示:
以上这篇python实现二分类和多分类的ROC曲线教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持自学编程网。